Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(7): 075105, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922336

RESUMO

Volcanic plumes pose a hazard to health and society and a particular risk for aviation. Hazard mitigation relies on forecasting plume dispersion within the atmosphere over time. The accuracy of forecasts depends on our understanding of particle dispersion and sedimentation processes, as well as on the accuracy of model input parameters, such as the initial particle size distribution and concentrations of volcanic particles (i.e., volcanic ash) in the atmosphere. However, our understating of these processes and the accurate quantification of input parameters remain the main sources of uncertainty in plume dispersion modeling. It is usually impractical to sample volcanic plumes directly, but particle sedimentation can be constrained in the laboratory. Here, we describe the design of a new experimental apparatus for investigating the dynamics of free-falling volcanic particles. The apparatus can produce a sustained column of falling particles with variable particle concentrations appropriate to a volcanic plume. Controllable experimental parameters include particle size distributions, types, and release rates. A laser-illuminated macrophotography system allows imaging of in-flight particles and their interactions. The mass of landing particles is logged to inform deposition rates. Quantitative measurements include particle morphology characterization, settling velocities, flow rates, and estimation of concentrations. Simultaneous observations of particle interaction processes and settling dynamics through direct control over a wide range of parameters will improve our parameterization of volcanic plume dynamics. Although the apparatus has been specifically designed for volcanological investigations, it can also be used to explore the characteristics of free-falling particle columns occurring in both environmental and industrial settings.

2.
Proc Natl Acad Sci U S A ; 116(51): 25468-25477, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792177

RESUMO

Supraglacial lake drainage events influence Greenland Ice Sheet dynamics on hourly to interannual timescales. However, direct observations are rare, and, to date, no in situ studies exist from fast-flowing sectors of the ice sheet. Here, we present observations of a rapid lake drainage event at Store Glacier, west Greenland, in 2018. The drainage event transported 4.8 × 106 m3 of meltwater to the glacier bed in ∼5 h, reducing the lake to a third of its original volume. During drainage, the local ice surface rose by 0.55 m, and surface velocity increased from 2.0 m⋅d-1 to 5.3 m⋅d-1 Dynamic responses were greatest ∼4 km downstream from the lake, which we interpret as an area of transient water storage constrained by basal topography. Drainage initiated, without any precursory trigger, when the lake expanded and reactivated a preexisting fracture that had been responsible for a drainage event 1 y earlier. Since formation, this fracture had advected ∼500 m from the lake's deepest point, meaning the lake did not fully drain. Partial drainage events have previously been assumed to occur slowly via lake overtopping, with a comparatively small dynamic influence. In contrast, our findings show that partial drainage events can be caused by hydrofracture, producing new hydrological connections that continue to concentrate the supply of surface meltwater to the bed of the ice sheet throughout the melt season. Our findings therefore indicate that the quantity and resultant dynamic influence of rapid lake drainages are likely being underestimated.

3.
Nat Commun ; 4: 2709, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24177004

RESUMO

The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (>30 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011-2012 eruption at Cordón Caulle, Chile. We combine high-resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, ~35 m-thick flow margins creating >80 breakout lobes. In January 2013, flow front advance continued ~3.6 km from the vent, despite detectable lava supply ceasing 6-8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...