Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomolecules ; 11(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804209

RESUMO

Biological structure-function relationships offer incomparable paradigms for charge-transfer (CT) science and its implementation in solar-energy engineering, organic electronics, and photonics. Electrets are systems with co-directionally oriented electric dopes with immense importance for CT science, and bioinspired molecular electrets are polyamides of anthranilic-acid derivatives with designs originating from natural biomolecular motifs. This publication focuses on the synthesis of molecular electrets with ether substituents. As important as ether electret residues are for transferring holes under relatively high potentials, the synthesis of their precursors presents formidable challenges. Each residue in the molecular electrets is introduced as its 2-nitrobenzoic acid (NBA) derivative. Hence, robust and scalable synthesis of ether derivatives of NBA is essential for making such hole-transfer molecular electrets. Purdie-Irvine alkylation, using silver oxide, produces with 90% yield the esters of the NBA building block for iso-butyl ether electrets. It warrants additional ester hydrolysis for obtaining the desired NBA precursor. Conversely, Williamson etherification selectively produces the same free-acid ether derivative in one-pot reaction, but a 40% yield. The high yields of Purdie-Irvine alkylation and the selectivity of the Williamson etherification provide important guidelines for synthesizing building blocks for bioinspired molecular electrets and a wide range of other complex ether conjugates.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Alquilação , Éter/química , Calefação , Micro-Ondas , Óxidos/química , Compostos de Prata/química , ortoaminobenzoatos/química
2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20234849

RESUMO

Risk factors for increased risk of death from Coronavirus Disease 19 (COVID-19) have been identified1,2 but less is known on characteristics that make communities resilient or vulnerable to the mortality impacts of the pandemic. We applied a two-stage Bayesian spatial model to quantify inequalities in excess mortality at the community level during the first wave of the pandemic in England. We used geocoded data on all deaths in people aged 40 years and older during March-May 2020 compared with 2015-2019 in 6,791 local communities. Here we show that communities with an increased risk of excess mortality had a high density of care homes, and/or high proportion of residents on income support, living in overcrowded homes and/or high percent of people with a non-White ethnicity (including Black, Asian and other minority ethnic groups). Conversely, after accounting for other community characteristics, we found no association between population density or air pollution and excess mortality. Overall, the social and environmental variables accounted for around 15% of the variation in mortality at community level. Effective and timely public health and healthcare measures that target the communities at greatest risk are urgently needed if England and other industrialised countries are to avoid further widening of inequalities in mortality patterns during the second wave.

3.
- The COVID Moonshot Initiative; Hagit Achdout; Anthony Aimon; Elad Bar-David; Haim Barr; Amir Ben-Shmuel; James Bennett; Vitaliy A. Bilenko; Vitaliy A. Bilenko; Melissa L. Boby; Bruce Borden; Gregory R. Bowman; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Daniel Carney; Emma Cattermole; Edcon Chang; Eugene Chernyshenko; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Kim Donckers; David L. Dotson; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Charles J. Eyermann; Mike Fairhead; Gwen Fate; Daren Fearon; Oleg Fedorov; Matteo Ferla; Rafaela S. Fernandes; Lori Ferrins; Richard Foster; Holly Foster; Ronen Gabizon; Adolfo Garcia-Sastre; Victor O. Gawriljuk; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Andre S. Godoy; Marian Gorichko; Tyler Gorrie-Stone; Ed J. Griffen; Storm Hassell Hart; Jag Heer; Michael Henry; Michelle Hill; Sam Horrell; Victor D. Huliak; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Jitske Jansen; Eric Jnoff; Dirk Jochmans; Tobias John; Steven De Jonghe; Anastassia L. Kantsadi; Peter W. Kenny; J. L. Kiappes; Serhii O. Kinakh; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Lee; Bruce A. Lefker; Haim Levy; Ivan G. Logvinenko; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Briana L. McGovern; Sharon Melamed; Kostiantyn P. Melnykov; Oleg Michurin; Halina Mikolajek; Bruce F. Milne; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Aline M. Nakamura; Jose Brandao Neto; Johan Neyts; Luong Nguyen; Gabriela D. Noske; Vladas Oleinikovas; Glaucius Oliva; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Emily Grace Ripka; Matthew C. Robinson; Ralph P. Robinson; Jaime Rodriguez-Guerra; Romel Rosales; Dominic Rufa; Kadi Saar; Kumar Singh Saikatendu; Chris Schofield; Mikhail Shafeev; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Sukrit Singh; Assa Sittner; Rachael Skyner; Adam Smalley; Bart Smeets; Mihaela D. Smilova; Leonardo J. Solmesky; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Warren Thompson; Andrew Thompson; Susana Tomasio; Igor S. Tsurupa; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Laura Vangeel; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Andrea Volkamer; Frank von Delft; Annette von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Kris M. White; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-339317

RESUMO

The COVID-19 pandemic is a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Future pandemics could be prevented by accessible, easily deployable broad-spectrum oral antivirals and open knowledge bases that derisk and accelerate novel antiviral discovery and development. Here, we report the results of the COVID Moonshot, a fully open-science structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical scaffold that is differentiated from current clinical candidates in terms of toxicity, resistance, and pharmacokinetics liabilities, and developed it into noncovalent orally-bioavailable nanomolar inhibitors with clinical potential. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations. In the process, we generated a detailed map of the structural plasticity of the main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>500 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32341732

RESUMO

In addition to developing innovative research programs, life science research faculty at research-intensive institutions are tasked with providing career mentoring and scientific training to new generations of scientists, including postgraduate, graduate, and undergraduate students. In this essay, we argue for a redefinition of mentoring in laboratory research, to thoroughly distinguish three essential roles played by research faculty relative to their trainees: advisor, educator, and supervisor. In particular, we pay attention to the often unacknowledged and misunderstood role of a faculty member as a supervisor and discuss the impact of neglecting supervisory best practices on trainees, on the diversity of the academic pipeline, and on the research enterprise. We also provide actionable frameworks for research mentors who wish to use inclusive supervisory and pedagogical practices in their laboratory. Finally, we call for more research around the supervisory role of research faculty and its impact on trainees, particularly community college students, in order to help broaden the participation of underrepresented students in STEM fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA