Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268617

RESUMO

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 wild type and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over 6 months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463592

RESUMO

While children have been largely spared from COVID-19 disease, the emergence of viral variants of concern (VOC) with increased transmissibility, combined with fluctuating mask mandates and school re-openings have led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remains unclear. Given the recent announcement of incomplete immunity induced by the pediatric dose of the BNT162b2 vaccine in young children, here we aimed to deeply profile and compare the vaccine-induced humoral immune response in 6-11 year old children receiving the pediatric (50g) or adult (100g) dose of the mRNA-1273 vaccine compared to adults and naturally infected children or children that experienced multi inflammatory syndrome in children (MIS-C) for the first time. Children elicited an IgG dominant vaccine induced immune response, surpassing adults at a matched 100g dose, but more variable immunity at a 50g dose. Irrespective of titer, children generated antibodies with enhanced Fc-receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron receptor binding domain-binding, but robustly preserved omicron Spike-receptor binding, with robustly preserved Fc-receptor binding capabilities, in a dose dependent manner. These data indicate that while both 50g and 100g of mRNA vaccination in children elicits robust cross-VOC antibody responses, 100ug of mRNA in children results in highly preserved omicron-specific functional humoral immunity. One-Sentence SummarymRNA vaccination elicits robust humoral immune responses to SARS-CoV-2 in children 6-11 years of age.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249839

RESUMO

Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. This study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan -- T cell subsets decrease less than 2-fold -- and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis, and the percentage of amphiregulin-producing ILCs was higher in females than in males. These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance accounts for increased COVID-19 severity with age and in males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...