Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Mech Behav Biomed Mater ; 122: 104657, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246851

RESUMO

Present research aims to develop a finite element computational model to examine delamination-fretting wear behaviour that can suitably mimic actual loading conditions at HAp-Ti-6Al-4V interface of uncemented hip implant femoral stem component. A simple finite element contact configuration model based on fretting fatigue experimental arrangement subjected to different mechanical and tribological properties consist of contact pad (bone), HAp coating and Ti-6Al-4V substrate are developed using adaptive wear modelling approach adopting modified Archard wear equation to be examined under static simulation. The developed finite element model is validated and verified with reported literatures. The findings revealed that significant delamination-fretting wear is recorded at contact edge (leading edge) as a result of substantial contact pressure and contact slip driven by stress singularity effect. The delamination-fretting wear behaviour is promoted under higher delamination length, lower normal loading with higher fatigue loading, increased porous (cancellous) and cortical bone elastic modulus with higher cycle number due to significant relative slip amplitude as the result of reduced interface rigidity. Tensile-compressive condition (R=-1) experiences most significant delamination-fretting wear behaviour (8 times higher) compared to stress ratio R=0.1 and R=10.


Assuntos
Prótese de Quadril , Titânio , Osso Cortical , Módulo de Elasticidade , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA