Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558536

RESUMO

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
2.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801613

RESUMO

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
3.
Mol Cancer Ther ; 22(4): 511-518, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780008

RESUMO

Given that radium-223 is a radiopharmaceutical that induces DNA damage, and olaparib is a PARP inhibitor that interferes with DNA repair mechanisms, we hypothesized their synergy in metastatic castration-resistant prostate cancer (mCRPC). We sought to demonstrate the safety and efficacy of olaparib + radium-223. We conducted a multicenter phase I 3+3 dose escalation study of olaparib with fixed dose radium-223 in patients with mCRPC with bone metastases. The primary objective was to establish the RP2D of olaparib, with secondary objectives of safety, PSA response, alkaline phosphatase response, radiographic progression-free survival (rPFS), overall survival, and efficacy by homologous recombination repair (HRR) gene status. Twelve patients were enrolled; all patients received a prior androgen receptor signaling inhibitor (ARSI; 100%) and 3 patients (25%) prior docetaxel. Dose-limiting toxicities (DLT) included cytopenias, fatigue, and nausea. No DLTs were seen in the observation period however delayed toxicities guided the RP2D. The RP2D of olaparib was 200 mg orally twice daily with radium-223. The most common treatment-related adverse events were fatigue (92%) and anemia (58%). The rPFS at 6 months was 58% (95% confidence interval, 27%-80%). Nine patients were evaluable for HRR gene status; 1 had a BRCA2 alteration (rPFS 11.8 months) and 1 had a CDK12 alteration (rPFS 3.1 months). Olaparib can be safely combined with radium-223 at the RP2D 200 mg orally twice daily with fixed dose radium-223. Early clinical benefit was observed and will be investigated in a phase II study.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/radioterapia , Antineoplásicos/uso terapêutico , Fadiga/induzido quimicamente
4.
Eur Urol Focus ; 9(3): 447-454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36517408

RESUMO

BACKGROUND: There is an unmet clinical need for interventions to prevent disease progression in patients with localized prostate cancer on active surveillance (AS). OBJECTIVE: To determine the immunologic response to the PROSTVAC vaccine and the clinical indicators of disease progression in patients with localized prostate cancer on AS. DESIGN, SETTING, AND PARTICIPANTS: This was a phase 2, double-blind, randomized controlled trial in 154 men with low- or intermediate-risk prostate cancer on AS. INTERVENTION: Participants were randomized (2:1) to receive seven doses of subcutaneous PROSTVAC, a vaccinia/fowlpox viral vector-based immunotherapy containing a prostate-specific antigen (PSA) transgene and three T-cell co-stimulatory molecules, or an empty fowlpox vector (EV) over 140 d. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary outcome was the change from baseline in CD4 and CD8 T-cell infiltration in biopsy tumor tissue. Key secondary outcomes were safety and changes in prostate biopsy tumor pathology, peripheral antigen-specific T cells, and serum PSA. Continuous variables were compared using nonparametric tests. Categorical variables were compared using Fisher's exact test. RESULTS AND LIMITATIONS: The PROSTVAC/EV vaccination was well tolerated. All except one participant completed the vaccination series. Changes in CD4 or CD8 density in biopsy tumor tissue did not differ between the PROSTVAC and EV arms. The proportions of patients with Gleason upgrading to grade group 3 after treatment was similar between the arms. There were no differences in postvaccination peripheral T-cell responses or the PSA change from baseline to 6-mo post-treatment follow-up between the groups. CONCLUSIONS: In this first-of-kind trial of immunotherapy in patients on AS for prostate cancer, PROSTVAC did not elicit more favorable prostate tissue or peripheral T-cell responses than the EV. There was no difference between the arms in clinicopathologic effects. Despite the null findings, this is the first study reporting the feasibility and acceptability of an immunotherapy intervention in the AS setting. PATIENT SUMMARY: We looked at responses after an experimental prostate cancer vaccine in patients with prostate cancer on active surveillance (AS). Participants who received the vaccine did not show more favorable outcomes than those receiving the control. Despite these findings, this is the first report showing the feasibility and acceptability of immunotherapy for prostate cancer in patients on AS.


Assuntos
Vacinas Anticâncer , Varíola Aviária , Neoplasias da Próstata , Masculino , Animais , Humanos , Antígeno Prostático Específico , Conduta Expectante , Neoplasias da Próstata/patologia , Progressão da Doença
5.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328625

RESUMO

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Benzamidas/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante Heterólogo , Internalização do Vírus
7.
Sci Adv ; 7(33)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34380625

RESUMO

Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).


Assuntos
Anticorpos Biespecíficos , Neoplasias de Próstata Resistentes à Castração , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Ligantes , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T
8.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602823

RESUMO

Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8+ CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.


Assuntos
Apresentação de Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células , Quimioterapia Combinada , Humanos , Imunoterapia/métodos , Camundongos , NF-kappa B/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxaliplatina/farmacologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Transcrição de p300-CBP/genética
9.
J Pediatr Hematol Oncol ; 43(3): e304-e311, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33480647

RESUMO

Ewing sarcoma (ES) is the second most common pediatric bone cancer. Despite recent advances in the treatment, patients with metastatic tumors have dismal prognosis and hence novel therapies are urgently needed to combat this cancer. A recent study has shown that phosphoinositide-3 kinase (PI3K) inhibitors can synergistically increase sensitivity to bromodomain and extraterminal domain inhibitors in ES cells and therefore combined inhibition of PI3K and bromodomain and extraterminal domain bromodomain proteins might provide benefit in this cancer. Herein, we have investigated the efficacy of dual PI3K/BRD4 inhibitors, SF2523 and SF1126, for their antitumor activity in ES cell lines. The effect of SF1126 and SF2523 on cell viability and PI3K signaling was assessed on a panel of human ES cell lines. To evaluate the antitumor activity of SF1126, A673 cells were injected intrafemorally into RAG-2-/- mice and treated with 50 mg/kg SF1126 6 days per week, for 30 days. Both SF1126 and SF2523 decreased cell survival and inhibited phosphorylation of AKT in human ES cell lines. In vivo, SF1126 showed a significant reduction in tumor volume. These results suggest that dual PI3K/BRD4 inhibitor, SF1126, has antitumor activity in ES models.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cromonas/uso terapêutico , Morfolinas/uso terapêutico , Oligopeptídeos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Piranos/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Humanos , Camundongos , Morfolinas/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Piranos/farmacologia , Sarcoma de Ewing/metabolismo , Fatores de Transcrição/metabolismo
10.
J Transl Med ; 18(1): 214, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466781

RESUMO

BACKGROUND: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. METHODS: An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch's t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. RESULTS: Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. CONCLUSIONS: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1.


Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Animais , Antígeno B7-H1 , Humanos , Linfócitos do Interstício Tumoral , Masculino , Camundongos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Rituximab/uso terapêutico , Linfócitos T , Microambiente Tumoral
11.
Cancers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392735

RESUMO

BACKGROUND: While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS: Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS: Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS: Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.

12.
J Vis Exp ; (156)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065165

RESUMO

Three-dimensional (3D) culture of organoids from tumor specimens of human patients and patient-derived xenograft (PDX) models of prostate cancer, referred to as patient-derived organoids (PDO), are an invaluable resource for studying the mechanism of tumorigenesis and metastasis of prostate cancer. Their main advantage is that they maintain the distinctive genomic and functional heterogeneity of the original tissue compared to conventional cell lines that do not. Furthermore, 3D cultures of PDO can be used to predict the effects of drug treatment on individual patients and are a step towards personalized medicine. Despite these advantages, few groups routinely use this method in part because of the extensive optimization of PDO culture conditions that may be required for different patient samples. We previously demonstrated that our prostate cancer bone metastasis PDX model, PCSD1, recapitulated the resistance of the donor patient's bone metastasis to anti-androgen therapy. We used PCSD1 3D organoids to characterize further the mechanisms of anti-androgen resistance. Following an overview of currently published studies of PDX and PDO models, we describe a step-by-step protocol for 3D culture of PDO using domed or floating basement membrane (e.g., Matrigel) spheres in optimized culture conditions. In vivo stitch imaging and cell processing for histology are also described. This protocol can be further optimized for other applications including western blot, co-culture, etc. and can be used to explore characteristics of 3D cultured PDO pertaining to drug resistance, tumorigenesis, metastasis and therapeutics.


Assuntos
Neoplasias Ósseas/secundário , Organoides/patologia , Neoplasias da Próstata/patologia , Técnicas de Cultura de Tecidos , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino
13.
Am J Clin Exp Urol ; 7(4): 297-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31511835

RESUMO

Bone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors. The first pathway involves integrin α6ß1-mediated adhesion to laminin and the second involves hypoxia-induced expression of PIM kinases. In vitro and in vivo models demonstrate that these pathways transduce parallel but independent signals that promote survival by reducing oxidative stress and preventing cell death. We further demonstrate that both pathways drive resistance to PI3K inhibitors in PTEN-negative tumors. These results provide preclinical evidence that combined inhibition of integrin α6ß1 and PIM kinase in CRPC is required to overcome tumor microenvironment-mediated resistance to PI3K inhibitors in PTEN-negative tumors within the hypoxic and laminin-rich bone microenvironment.

14.
Oncogene ; 38(23): 4496-4511, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742064

RESUMO

Sustained reliance on androgen receptor (AR) after failure of AR-targeting androgen deprivation therapy (ADT) prevents effective treatment of castration-recurrent (CR) prostate cancer (CaP). Interfering with the molecular machinery by which AR drives CaP progression may be an alternative therapeutic strategy but its feasibility remains to be tested. Here, we explore targeting the mechanism by which AR, via RhoA, conveys androgen-responsiveness to serum response factor (SRF), which controls aggressive CaP behavior and is maintained in CR-CaP. Following a siRNA screen and candidate gene approach, RNA-Seq studies confirmed that the RhoA effector Protein Kinase N1 (PKN1) transduces androgen-responsiveness to SRF. Androgen treatment induced SRF-PKN1 interaction, and PKN1 knockdown or overexpression severely impaired or stimulated, respectively, androgen regulation of SRF target genes. PKN1 overexpression occurred during clinical CR-CaP progression, and hastened CaP growth and shortened CR-CaP survival in orthotopic CaP xenografts. PKN1's effects on SRF relied on its kinase domain. The multikinase inhibitor lestaurtinib inhibited PKN1 action and preferentially affected androgen regulation of SRF over direct AR target genes. In a CR-CaP patient-derived xenograft, expression of SRF target genes was maintained while AR target gene expression declined and proliferative gene expression increased. PKN1 inhibition decreased viability of CaP cells before and after ADT. In patient-derived CaP explants, lestaurtinib increased AR target gene expression but did not significantly alter SRF target gene or proliferative gene expression. These results provide proof-of-principle for selective forms of ADT that preferentially target different fractions of AR's transcriptional output to inhibit CaP growth.


Assuntos
Androgênios/metabolismo , Neoplasias da Próstata/terapia , Proteína Quinase C/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Furanos , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias da Próstata/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
16.
Br J Cancer ; 118(5): 670-678, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381686

RESUMO

BACKGROUND: Although the standard treatment for the patients with recurrent and metastatic prostate cancer (CaP) is androgen deprivation therapy, castration-resistant prostate cancer (CRPC) eventually emerges. Our previous report indicated that bone morphogenetic protein 6 (BMP6) induced CRPC via tumour-infiltrating macrophages. In a separate line of study, we have observed that the WNT5A/BMP6 loop in CaP bone metastasis mediates resistance to androgen deprivation in tissue culture. Simultaneously, we have reported that BMP6 induced castration resistance in CaP cells via tumour-infiltrating macrophages. Therefore, our present study aims to investigate the mechanism of WNT5A and its interaction with macrophages on CRPC. METHODS: Doxycycline inducible WNT5A overexpression prostate cancer cell line was used for detailed mechanical study. RESULTS: WNT5A was associated with increased expression of chemokine ligand 2 (CCL2) in the human CaP cell line, LNCaP. Mechanistically, this induction of CCL2 by WNT5A is likely to be mediated via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathway. Our in vivo experiments demonstrated that the overexpression of WNT5A in LNCaP cells promoted castration resistance. Conversely, this resistance was inhibited with the removal of macrophages via clodronate liposomes. When patient-derived CaP LuCaP xenografts were analysed, high levels of WNT5A were correlated with increased levels of CCL2 and BMP6. In addition, higher levels of CCL2 and BMP6 were more commonly observed in intra-femoral transplanted tumours as compared to subcutaneous-transplanted tumours in the patient-derived PCSD1 bone-niche model. CONCLUSIONS: These findings collectively suggest that WNT5A may be a key gene that induces CRPC in the bone niche by recruiting and regulating macrophages through CCL2 and BMP6, respectively.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Quimiocina CCL2/metabolismo , Macrófagos/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Regulação para Cima , Proteína Wnt-5a/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Ácido Clodrônico/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Neoplasias de Próstata Resistentes à Castração/patologia , Análise Serial de Tecidos
17.
Asian J Urol ; 3(4): 229-239, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29264191

RESUMO

OBJECTIVE: Bone metastasis occurs in up to 90% of men with advanced prostate cancer and leads to fractures, severe pain and therapy-resistance. Bone metastases induce a spectrum of types of bone lesions which can respond differently to therapy even within individual prostate cancer patients. Thus, the special environment of the bone makes the disease more complicated and incurable. A model in which bone lesions are reproducibly induced that mirrors the complexity seen in patients would be invaluable for pre-clinical testing of novel treatments. The microstructural changes in the femurs of mice implanted with PCSD1, a new patient-derived xenograft from a surgical prostate cancer bone metastasis specimen, were determined. METHODS: Quantitative micro-computed tomography (micro-CT) and histological analyses were performed to evaluate the effects of direct injection of PCSD1 cells or media alone (Control) into the right femurs of Rag2-/-γc-/- male mice. RESULTS: Bone lesions formed only in femurs of mice injected with PCSD1 cells. Bone volume (BV) was significantly decreased at the proximal and distal ends of the femurs (p < 0.01) whereas BV (p < 0.05) and bone shaft diameter (p < 0.01) were significantly increased along the femur shaft. CONCLUSION: PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur, and, in contrast, induced aberrant bone formation leading to osteoblastic lesions along the femur shaft. Therefore, the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion. Our approach can be used to determine if different bone regions support more therapy resistant tumor growth, thus, requiring novel treatments.

18.
Nature ; 521(7550): 94-8, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25924065

RESUMO

Cancer-associated genetic alterations induce expression of tumour antigens that can activate CD8(+) cytotoxic T cells (CTLs), but the microenvironment of established tumours promotes immune tolerance through poorly understood mechanisms. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumour-directed CTLs and are effective in some human cancers. Immune mechanisms also affect treatment outcome, and certain chemotherapeutic drugs stimulate cancer-specific immune responses by inducing immunogenic cell death and other effector mechanisms. Our previous studies revealed that B cells recruited by the chemokine CXCL13 into prostate cancer tumours promote the progression of castrate-resistant prostate cancer by producing lymphotoxin, which activates an IκB kinase α (IKKα)-BMI1 module in prostate cancer stem cells. Because castrate-resistant prostate cancer is refractory to most therapies, we examined B cell involvement in the acquisition of chemotherapy resistance. Here we focus on oxaliplatin, an immunogenic chemotherapeutic agent that is effective in aggressive prostate cancer. We show that mouse B cells modulate the response to low-dose oxaliplatin, which promotes tumour-directed CTL activation by inducing immunogenic cell death. Three different mouse prostate cancer models were refractory to oxaliplatin unless genetically or pharmacologically depleted of B cells. The crucial immunosuppressive B cells are plasmocytes that express IgA, interleukin (IL)-10 and programmed death ligand 1 (PD-L1), the appearance of which depends on TGFß receptor signalling. Elimination of these cells, which also infiltrate human-therapy-resistant prostate cancer, allows CTL-dependent eradication of oxaliplatin-treated tumours.


Assuntos
Compostos Organoplatínicos/farmacologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Anticorpos Antineoplásicos/imunologia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Células Cultivadas , Quimiocina CXCL13/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Imunoglobulina A/imunologia , Interleucina-10/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/imunologia , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Plasmócitos/citologia , Neoplasias da Próstata/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/citologia , Fator de Crescimento Transformador beta/imunologia
19.
J Transl Med ; 12: 275, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25278011

RESUMO

INTRODUCTION: Prostate cancer bone metastasis occurs in 50-90% of men with advanced disease for which there is no cure. Bone metastasis leads to debilitating fractures and severe bone pain. It is associated with therapy resistance and rapid decline. Androgen deprivation therapy (ADT) is standard of care for advanced prostate cancer, however, bone metastatic prostate cancer (PCa) often becomes resistant to ADT. There are few pre-clinical models to understand the interaction between the bone microenvironment and prostate cancer. Here we report the castrate resistant growth in the bone niche of PCSD1, a patient-derived intra-femoral xenograft model of prostate bone metastatic cancer treated with the anti-androgen, bicalutamide. METHODS: PCSD1 bone-niche model was derived from a human prostate cancer femoral metastasis resected during hemiarthroplasty and serially transplanted into Rag2(-/-); γ c(-/-) mice intra-femorally (IF) or sub-cutaneously (SC). At 5 weeks post-transplantation mice received bicalutamide or vehicle control for 18 days. Tumor growth of PCSD1 was measured with calipers. PSA expression in PCSD1 xenograft tumors was determined using quantitative RT-PCR and immunohistochemistry. Expression of AR and PSMA, were also determined with qPCR. RESULTS: PCSD1 xenograft tumor growth capacity was 24 fold greater in the bone (intra-femoral, IF) than in the soft tissue (sub-cutaneous, SC) microenvironment. Treatment with the anti-androgen, bicalutamide, inhibited tumor growth in the sub-cutaneous transplantation site. However, bicalutamide was ineffective in suppressing PCSD1 tumor growth in the bone-niche. Nevertheless, bicalutamide treatment of intra-femoral tumors significantly reduced PSA expression (p < = 0.008) and increased AR (p < = 0.032) relative to control. CONCLUSIONS: PCSD1 tumors were castrate resistant when growing in the bone-niche compared to soft tissue. Bicalutamide had little effect on reducing tumor burden in the bone yet still decreased tumor PSA expression and increased AR expression, thus, this model closely recapitulated castrate-resistant, human prostate cancer bone metastatic disease. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study bone metastatic disease and for pre-clinical drug development of novel therapies for inhibiting therapy resistant prostate cancer growth in the bone-niche.


Assuntos
Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Orquiectomia , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Anilidas/uso terapêutico , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Nitrilas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Compostos de Tosil/uso terapêutico
20.
Proc Natl Acad Sci U S A ; 111(41): 14776-81, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267627

RESUMO

Prostate cancer (PC) is a slowly progressing malignancy that often responds to androgen ablation or chemotherapy by becoming more aggressive, acquiring a neuroendocrine phenotype, and undergoing metastatic spread. We found that B lymphocytes recruited into regressing androgen-deprived tumors by C-X-C motif chemokine 13 (CXCL13), a chemokine whose expression correlates with clinical severity, play an important role in malignant progression and metastatic dissemination of PC. We now describe how androgen ablation induces CXCL13 expression. In both allografted and spontaneous mouse PC, CXCL13 is expressed by tumor-associated myofibroblasts that are activated on androgen ablation through a hypoxia-dependent mechanism. The same cells produce CXCL13 after chemotherapy. Myofibroblast activation and CXCL13 expression also occur in the normal prostate after androgen deprivation, and CXCL13 is expressed by myofibroblasts in human PC. Hypoxia activates hypoxia-inducible factor 1 (HIF-1) and induces autocrine TGF-ß signaling that promotes myofibroblast activation and CXCL13 induction. In addition to TGF-ß receptor kinase inhibitors, myofibroblast activation and CXCL13 induction are blocked by phosphodiesterase 5 (PDE5) inhibitors. Both inhibitor types and myofibroblast immunodepletion block the emergence of castration-resistant PC in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous metastatic PC with neuroendocrine differentiation.


Assuntos
Quimiocina CXCL13/metabolismo , Progressão da Doença , Hipóxia/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Androgênios/farmacologia , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Transgênicos , Miofibroblastos/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...