Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 229(2): R67-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26931135

RESUMO

Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia (age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related conditions that occur in the elderly. In addition, a syndrome of 'sarcopenic obesity' (SO) is now increasingly recognised, which is common in older people and is applied to individuals that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased risk of adverse health events compared with those who are obese or sarcopenic alone. However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly defined clinically and the mechanisms that might explain a common aetiology are not yet well characterised. In this review, we detail the nature and extent of the clinical syndrome, highlight some of the key physiological processes that are dysregulated and discuss some candidate molecular pathways that could be implicated in both metabolic and anabolic defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein kinase, myostatin, urocortins and vitamin D are discussed.


Assuntos
Resistência à Insulina/fisiologia , Sarcopenia/metabolismo , Adipócitos/metabolismo , Idoso , Comorbidade , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Modelos Biológicos , Proteínas Musculares/metabolismo , Obesidade/epidemiologia , Obesidade/metabolismo , Sarcopenia/epidemiologia , Transdução de Sinais
2.
J Endocrinol ; 223(2): 143-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122003

RESUMO

Insulin resistance (IR) in skeletal muscle is an important component of both type 2 diabetes and the syndrome of sarcopaenic obesity, for which there are no effective therapies. Urocortins (UCNs) are not only well established as neuropeptides but also have their roles in metabolism in peripheral tissues. We have shown recently that global overexpression of UCN3 resulted in muscular hypertrophy and resistance to the adverse metabolic effects of a high-fat diet. Herein, we aimed to establish whether short-term local UCN3 expression could enhance glucose disposal and insulin signalling in skeletal muscle. UCN3 was found to be expressed in right tibialis cranialis and extensor digitorum longus muscles of rats by in vivo electrotransfer and the effects studied vs the contralateral muscles after 1 week. No increase in muscle mass was detected, but test muscles showed 19% larger muscle fibre diameter (P=0.030), associated with increased IGF1 and IGF1 receptor mRNA and increased SER256 phosphorylation of forkhead transcription factor. Glucose clearance into the test muscles after an intraperitoneal glucose load was increased by 23% (P=0.018) per unit mass, associated with increased GLUT1 (34% increase; P=0.026) and GLUT4 (48% increase; P=0.0009) proteins, and significantly increased phosphorylation of insulin receptor substrate-1, AKT, AKT substrate of 160 kDa, glycogen synthase kinase-3ß, AMP-activated protein kinase and its substrate acetyl coA carboxylase. Thus, UCN3 expression enhances glucose disposal and signalling in muscle by an autocrine/paracrine mechanism that is separate from its pro-hypertrophic effects, implying that such a manipulation may have promised for the treatment of IR syndromes including sarcopaenic obesity.


Assuntos
Adenilato Quinase/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Proteína Oncogênica v-akt/metabolismo , Urocortinas/fisiologia , Animais , Comunicação Autócrina/genética , Masculino , Camundongos , Comunicação Parácrina/genética , Ratos , Ratos Transgênicos , Ratos Wistar , Transdução de Sinais/genética , Regulação para Cima/genética
3.
Biol Mood Anxiety Disord ; 4(1): 1, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24447313

RESUMO

BACKGROUND: Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. RESULTS: CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed.Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls.Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT1A receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. CONCLUSIONS: These results suggest that CRFR2 are required for proper functionality of 5-HT1A receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT content in lateral septum and subiculum was notably altered. These areas are important for anxiety, and are also implicated in reward and the pathophysiology of addiction. The role of CRFR2 in stress-related psychopathologies deserves further consideration.

4.
Biol Psychiatry ; 72(6): 437-47, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22704666

RESUMO

BACKGROUND: The corticotropin-releasing factor type 2 receptor (CRFR2) is suggested to play an important role in aiding recovery from acute stress, but any chronic effects of CRFR2 activation are unknown. CRFR2 in the midbrain raphé nuclei modulate serotonergic activity of this key source of serotonin (5-HT) forebrain innervation. METHODS: Transgenic mice overexpressing the highly specific CRFR2 ligand urocortin 3 (UCN3OE) were analyzed for stress-related behaviors and hypothalamic-pituitary-adrenal axis responses. Responses to 5-HT receptor agonist challenge were assessed by local cerebral glucose utilization, while 5-HT and 5-hydroxyindoleacetic acid content were quantified in limbic brain regions. RESULTS: Mice overexpressing urocortin 3 exhibited increased stress-related behaviors under basal conditions and impaired retention of spatial memory compared with control mice. Following acute stress, unlike control mice, they exhibited no further increase in these stress-related behaviors and showed an attenuated adrenocorticotropic hormone response. 5-HT and 5-hydroxyindoleacetic acid content of limbic nuclei were differentially regulated by stress in UCN3OE mice as compared with control mice. Responses to 5-HT type 1A receptor challenge were significantly and specifically reduced in UCN3OE mice. The distribution pattern of local cerebral glucose utilization and 5-HT type 1A receptor messenger RNA expression levels suggested this effect was mediated in the raphé nuclei. CONCLUSIONS: Chronic activation of CRFR2 promotes an anxiety-like state, yet with attenuated behavioral and hypothalamic-pituitary-adrenal axis responses to stress. This is reminiscent of stress-related atypical psychiatric syndromes such as posttraumatic stress disorder, chronic fatigue, and chronic pain states. This new understanding indicates CRFR2 antagonism as a potential novel therapeutic target for such disorders.


Assuntos
Ansiedade/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Urocortinas/genética , Análise de Variância , Animais , Ansiedade/genética , Encéfalo/metabolismo , Cromatografia Líquida , Corticosterona/metabolismo , Ácido Hidroxi-Indolacético/análise , Hibridização In Situ , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT1A de Serotonina/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Serotonina/análise , Estresse Fisiológico , Estresse Psicológico , Urocortinas/metabolismo
5.
Vet J ; 188(3): 318-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20554462

RESUMO

Urocortin (Ucn) peptides are the endogenous ligands for the corticotropin-releasing factor type 2 receptor (CRFR2). They have potentially important roles in cardiovascular physiology in health and disease, and show promise as therapeutics for congestive heart failure. Analysis of canine heart tissue showed mRNA expression of Ucn 1, Ucn 3 and CRFR2 in all heart chambers. Immunohistochemistry also demonstrated Ucns 1 and 3 expression in cardiomyocytes. To assess the potential usefulness of circulating Ucns as markers of heart disease, plasma samples from 45 dogs with cardiac disease and 15 controls were analysed by radioimmunoassay. Both Ucns 1 and 3 were measurable but the presence of cardiac disease did not alter their concentrations. Therefore, whilst Ucns are expressed in canine myocardium (where they may play a role in the endogenous neurohumoral response to cardiac disease or failure) they do not appear to be sensitive biomarkers of cardiac disease in our canine patient population.


Assuntos
Doenças Cardiovasculares/veterinária , Doenças do Cão/metabolismo , Miocárdio/metabolismo , Urocortinas/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Estudos de Casos e Controles , Doenças do Cão/sangue , Cães , Feminino , Masculino , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/sangue
6.
Endocrinology ; 147(10): 4578-88, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16809443

RESUMO

The endogenous corticotropin-releasing factor (CRF) type 2 receptor (CRFR2)-selective ligand urocortin 3 is expressed in discrete subcortical brain regions with fibers distributed mainly to hypothalamic and limbic structures. Close anatomical association between major urocortin 3 terminal fields and CRFR2 in hypothalamus, lateral septum, and medial amygdala (MEA) suggest it is well placed to modulate behavioral and hormonal responses to stress. Urocortin 3 was administered intracerebroventricularly to male rats under basal conditions or before a restraint stress, and circulating ACTH, corticosterone, glucose, and insulin were measured. Urocortin 3 activated the hypothalamic-pituitary-adrenal axis under basal conditions and augmented ACTH responses to restraint stress. Elevated blood glucose with lowered insulin to glucose ratios in both groups suggested increased sympathetic activity. Circulating catecholamines were also increased by urocortin 3, providing additional evidence for sympathoadrenomedullary stimulation. Intracerebroventricular urocortin 3 increased vasopressin mRNA expression in the parvocellular division of the hypothalamic paraventricular nucleus, whereas CRF expression was unchanged, providing a possible mechanism by which urocortin 3 mediates its actions. Urocortin 3 mRNA expression was examined after exposure to stress-related paradigms. Restraint increased levels in MEA with a trend to increased expression in the rostral perifornical hypothalamic area, whereas hemorrhage and food deprivation decreased expression in MEA. Adrenalectomy markedly increased expression in the rostral perifornical hypothalamic area, and high-level corticosterone replacement restored this to control levels. The evidence that urocortin 3 has the potential to influence hormonal components of the stress response and the changes in its expression levels after stressors is consistent with a potential function for the endogenous peptide in modulating stress responses.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Hormônio Liberador da Corticotropina/fisiologia , Glucocorticoides/farmacologia , Hipotálamo/fisiopatologia , Sistemas Neurossecretores/fisiopatologia , Estresse Psicológico/fisiopatologia , Adrenalectomia , Animais , Glicemia/metabolismo , Catecolaminas/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Privação de Alimentos/fisiologia , Hemorragia/fisiopatologia , Hibridização In Situ , Injeções Intravenosas , Injeções Intraventriculares , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Restrição Física , Urocortinas , Vasopressinas/farmacologia
7.
Gastroenterology ; 125(3): 654-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949710

RESUMO

BACKGROUND & AIMS: Corticotropin-releasing factor (CRF) signaling pathways play a key role in the stress response through the activation of CRF(1) and CRF(2) receptors. We investigated the CRF receptor subtypes involved in gastric postoperative ileus. METHODS: Adult male mice (C57BL/6, CRF(1)-deficient, and wild-type), fasted for 16-18 hours, were anesthetized for 10 minutes and had a midline celiotomy and cecal exteriorization and palpation for 30 or 60 seconds or no surgery (sham). Phenol red was given by gavage 100 minutes after anesthesia; 20 minutes later, gastric emptying and blood glucose level were measured. RESULTS: In C57BL/6 mice, cecal palpation for 30 or 60 seconds significantly reduced gastric emptying to 30.3% +/- 1.4% and 5.8% +/- 3.4%, respectively, compared with 58.5% +/- 4.4% in sham. The CRF(1) antagonist CP-154,526 (20 mg/kg subcutaneously) completely prevented the 30-second cecal palpation-induced delayed gastric emptying (53.0% +/- 7.9% vs. 28.0% +/- 4.0% in vehicle + surgery), whereas the CRF(2) antagonist astressin(2)-B injected subcutaneously had no effect. In CRF(1)-deficient mice, cecal palpation for 30 seconds did not delay gastric emptying (80.3% +/- 4.5% compared with 84.7% +/- 6.3% in sham); in wild-type mice, gastric emptying was decreased to 17.8% +/- 16.1% (P < 0.05 vs. sham 72.0% +/- 12.4%). Surgery increased glucose levels by 46% compared with sham in wild-type mice, while glycemia was not altered in CRF(1)-deficient mice. Basal emptying was similar in wild-type and CRF(1)-deficient mice and not influenced by CRF antagonists in C57BL/6 mice. CONCLUSIONS: These data show that CRF(1) activation plays an important role in mediating the early phase of gastric ileus.


Assuntos
Obstrução da Saída Gástrica/prevenção & controle , Obstrução Intestinal/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Animais , Ceco/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Palpação
8.
Endocrinology ; 144(7): 3216-24, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810578

RESUMO

Urocortin (Ucn) III, or stresscopin, is a high affinity ligand for the type 2 corticotropin-releasing factor (CRFR2) receptor recently identified in rodents and human. Ucn III was initially identified as a neuropeptide expressed in discrete areas in the brain. In the present study, we demonstrate that Ucn III is expressed in pancreatic beta-cells and in a mouse beta-cell line, MIN6. Ucn III secretion from the cells was measured using a highly specific RIA, and we found that high potassium, forskolin, or high glucose can stimulate Ucn III secretion from these cells. In vivo studies showed that rats receiving an iv Ucn III injection had a significant elevation of plasma glucagon followed by plasma glucose levels compared with rats receiving vehicle. Ucn III injections also result in an increase in plasma insulin levels. The observed effects of Ucn III were blocked by pretreatment with a CRFR2 antagonist, astressin(2)-B. Furthermore, Ucn III stimulated glucagon and insulin release from isolated rat islets, and astressin(2)-B abolished the effects of Ucn III, in keeping with a CRFR2-mediated mechanism. Taken together, the present studies suggest pancreatic Ucn III acting through CRFR2 is involved in the local regulation of glucagon and insulin secretion.


Assuntos
Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Linhagem Celular , Hormônio Liberador da Corticotropina/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...