Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979390

RESUMO

The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.


Assuntos
Vírus Nipah , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus Nipah/genética , Vírus Nipah/metabolismo , Imunidade Inata , RNA/metabolismo
2.
Viruses ; 14(12)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560817

RESUMO

As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.


Assuntos
Vírus da Raiva , Vírus da Raiva/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Proteínas do Nucleocapsídeo/genética , Chaperonas Moleculares/metabolismo , Fosfoproteínas/genética , RNA/metabolismo , RNA Viral/metabolismo
3.
J Mol Biol ; 434(10): 167551, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35317998

RESUMO

To understand the dynamic interactions between the phosphoprotein (P) and the nucleoprotein (N) within the transcription/replication complex of the Paramyxoviridae and to decipher their roles in regulating viral multiplication, we characterized the structural properties of the C-terminal X domain (PXD) of Nipah (NiV) and Hendra virus (HeV) P protein. In crystals, isolated NiV PXD adopted a two-helix dimeric conformation, which was incompetent for binding its partners, but in complex with the C-terminal intrinsically disordered tail of the N protein (NTAIL), it folded into a canonical 3H bundle conformation. In solution, SEC-MALLS, SAXS and NMR spectroscopy experiments indicated that both NiV and HeV PXD were larger in size than expected for compact proteins of the same molecular mass and were in conformational exchange between a compact three-helix (3H) bundle and partially unfolded conformations, where helix α3 is detached from the other two. Some measurements also provided strong evidence for dimerization of NiV PXD in solution but not for HeV PXD. Ensemble modeling of experimental SAXS data and statistical-dynamical modeling reconciled all these data, yielding a model where NiV and HeV PXD exchanged between different conformations, and where NiV but not HeV PXD formed dimers. Finally, recombinant NiV comprising a chimeric P carrying HeV PXD was rescued and compared with parental NiV. Experiments carried out in cellula demonstrated that the replacement of PXD did not significantly affect the replication dynamics while caused a slight virus attenuation, suggesting a possible role of the dimerization of NiV PXD in viral replication.


Assuntos
Vírus Hendra , Vírus Nipah , Proteínas do Nucleocapsídeo , Fosfoproteínas , Proteínas Virais , Replicação Viral , Vírus Hendra/genética , Vírus Hendra/fisiologia , Humanos , Vírus Nipah/genética , Vírus Nipah/fisiologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Espalhamento a Baixo Ângulo , Proteínas Virais/química , Proteínas Virais/genética , Difração de Raios X
4.
Biophys J ; 118(10): 2470-2488, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32348724

RESUMO

The structural characterization of modular proteins containing long intrinsically disordered regions intercalated with folded domains is complicated by their conformational diversity and flexibility and requires the integration of multiple experimental approaches. Nipah virus (NiV) phosphoprotein, an essential component of the viral RNA transcription/replication machine and a component of the viral arsenal that hijacks cellular components and counteracts host immune responses, is a prototypical model for such modular proteins. Curiously, the phosphoprotein of NiV is significantly longer than the corresponding protein of other paramyxoviruses. Here, we combine multiple biophysical methods, including x-ray crystallography, NMR spectroscopy, and small angle x-ray scattering, to characterize the structure of this protein and provide an atomistic representation of the full-length protein in the form of a conformational ensemble. We show that full-length NiV phosphoprotein is tetrameric, and we solve the crystal structure of its tetramerization domain. Using NMR spectroscopy and small angle x-ray scattering, we show that the long N-terminal intrinsically disordered region and the linker connecting the tetramerization domain to the C-terminal X domain exchange between multiple conformations while containing short regions of residual secondary structure. Some of these transient helices are known to interact with partners, whereas others represent putative binding sites for yet unidentified proteins. Finally, using NMR spectroscopy and isothermal titration calorimetry, we map a region of the phosphoprotein, comprising residues between 110 and 140 and common to the V and W proteins, that binds with weak affinity to STAT1 and confirm the involvement of key amino acids of the viral protein in this interaction. This provides new, to our knowledge, insights into how the phosphoprotein and the nonstructural V and W proteins of NiV perform their multiple functions.


Assuntos
Vírus Nipah , Fosfoproteínas , Conformação Proteica , Proteínas Virais , Replicação Viral
5.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852780

RESUMO

The phosphoprotein (P) of the nonsegmented negative-sense RNA viruses is a multimeric modular protein that is essential for RNA transcription and replication. Despite great variability in length and sequence, the architecture of this protein is conserved among the different viral families, with a long N-terminal intrinsically disordered region comprising a nucleoprotein chaperone module, a central multimerization domain (PMD), connected by a disordered linker to a C-terminal nucleocapsid-binding domain. The P protein of vesicular stomatitis virus (VSV) forms dimers, and here we investigate the importance of its dimerization domain, PMD, for viral gene expression and virus growth. A truncated P protein lacking the central dimerization domain (PΔMD) loses its ability to form dimers both in vitro and in a yeast two-hybrid system but conserves its ability to bind N. In a minireplicon system, the truncated monomeric protein performs almost as well as the full-length dimeric protein, while a recombinant virus harboring the same truncation in the P protein has been rescued and follows replication kinetics similar to those seen with the wild-type virus, showing that the dimerization domain of P is dispensable for viral gene expression and virus replication in cell culture. Because RNA viruses have high mutation rates, it is unlikely that a structured domain such as a VSV dimerization domain would persist in the absence of a function(s), but our work indicates that it is not required for the functioning of the RNA polymerase machinery or for the assembly of new viruses.IMPORTANCE The phosphoprotein (P) is an essential and conserved component of all nonsegmented negative-sense RNA viruses, including some major human pathogens (e.g., rabies virus, measles virus, respiratory syncytial virus [RSV], Ebola virus, and Nipah virus). P is a modular protein with intrinsically disordered regions and folded domains that plays specific and similar roles in the replication of the different viruses and, in some cases, hijacks cell components to the advantage of the virus and is involved in immune evasion. All P proteins are multimeric, but the role of this multimerization is still unclear. Here, we demonstrate that the dimerization domain of VSV P is dispensable for the expression of virally encoded proteins and for virus growth in cell culture. This provides new insights into and raises questions about the functioning of the RNA-synthesizing machinery of the nonsegmented negative-sense RNA viruses.


Assuntos
Fosfoproteínas/química , Domínios Proteicos , Multimerização Proteica , Vírus da Estomatite Vesicular Indiana/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Modelos Moleculares , Nucleocapsídeo/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica/genética , RNA Viral/genética , Alinhamento de Sequência , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento , Replicação Viral
6.
J Mol Biol ; 431(24): 4959-4977, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31634467

RESUMO

The rabies and Ebola viruses recruit the highly conserved host protein LC8 for their own reproductive success. In vivo knockouts of the LC8 recognition motif within the rabies virus phosphoprotein (RavP) result in completely nonlethal viral infections. In this work, we examine the molecular role LC8 plays in viral lethality. We show that RavP and LC8 colocalize in rabies infected cells, and that LC8 interactions are essential for efficient viral polymerase functionality. NMR, SAXS, and molecular modeling demonstrate that LC8 binding to a disordered linker adjacent to an endogenous dimerization domain results in restrictions in RavP domain orientations. The resulting ensemble structure of RavP-LC8 tetrameric complex is similar to that of a related virus phosphoprotein that does not bind LC8, suggesting that with RavP, LC8 binding acts as a switch to induce a more active conformation. The high conservation of the LC8 motif in Lyssavirus phosphoproteins and its presence in other analogous proteins such as the Ebola virus VP35 evinces a broader purpose for LC8 in regulating downstream phosphoprotein functions vital for viral replication.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Drosophila/química , Dineínas/química , Lyssavirus/enzimologia , Fosfoproteínas/química , Proteínas Virais/química , Sequência Conservada , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Ativação Enzimática , Interações Hospedeiro-Patógeno/imunologia , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Vírus da Raiva/metabolismo , Fator de Transcrição STAT1/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
7.
Nat Commun ; 7: 11222, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097556

RESUMO

Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza/genética , Fatores de Transcrição/química , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
J Mol Biol ; 428(13): 2671-94, 2016 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-27107640

RESUMO

Nucleocapsid assembly is an essential process in the replication of the non-segmented, negative-sense RNA viruses (NNVs). Unassembled nucleoprotein (N(0)) is maintained in an RNA-free and monomeric form by its viral chaperone, the phosphoprotein (P), forming the N(0)-P complex. Our earlier work solved the structure of vesicular stomatitis virus complex formed between an N-terminally truncated N (NΔ21) and a peptide of P (P60) encompassing the N(0)-binding site, but how the full-length P interacts with N(0) remained unknown. Here, we combine several experimental biophysical methods including size exclusion chromatography with detection by light scattering and refractometry, small-angle X-ray and neutron scattering and nuclear magnetic resonance spectroscopy with molecular dynamics simulation and computational modeling to characterize the NΔ21(0)-PFL complex formed with dimeric full-length P. We show that for multi-molecular complexes, simultaneous multiple-curve fitting using small-angle neutron scattering data collected at varying contrast levels provides additional information and can help refine structural ensembles. We demonstrate that (a) vesicular stomatitis virus PFL conserves its high flexibility within the NΔ21(0)-PFL complex and interacts with NΔ21(0) only through its N-terminal extremity; (b) each protomer of P can chaperone one N(0) client protein, leading to the formation of complexes with stoichiometries 1N:P2 and 2N:P2; and (c) phosphorylation of residues Ser60, Thr62 and Ser64 provides no additional interactions with N(0) but creates a metal binding site in PNTR. A comparison with the structures of Nipah virus and Ebola virus N(0)-P core complex suggests a mechanism for the control of nucleocapsid assembly that is common to all NNVs.


Assuntos
Chaperonas Moleculares/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas Estruturais Virais/metabolismo , Sítios de Ligação , Nucleocapsídeo/metabolismo , Ligação Proteica/genética , RNA Viral/genética , Estomatite Vesicular/virologia
9.
Nat Struct Mol Biol ; 21(9): 754-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108352

RESUMO

Nipah virus (NiV) is a highly pathogenic emergent paramyxovirus causing deadly encephalitis in humans. Its replication requires a constant supply of unassembled nucleoprotein (N(0)) in complex with its viral chaperone, the phosphoprotein (P). To elucidate the chaperone function of P, we reconstituted NiV the N(0)-P core complex and determined its crystal structure. The binding of the N-terminal region of P blocks the polymerization of N by interfering with subdomain exchange between N protomers and keeps N(0) in an open conformation, ready to grasp an RNA molecule. We found that a peptide derived from the N-binding region of P protects cells against viral infection and demonstrated by structure-based mutagenesis that this peptide acts by inhibiting N(0)-P formation. These results provide new insights about the assembly of N along genomic RNA and validate the N(0)-P complex as a target for drug development.


Assuntos
Infecções por Henipavirus/virologia , Vírus Nipah/fisiologia , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Vírus Nipah/química , Nucleoproteínas/química , Fosfoproteínas/química , Ligação Proteica , Conformação Proteica , Proteínas Virais/química
10.
Cell ; 157(2): 407-419, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725407

RESUMO

Cell-cell fusion proteins are essential in development. Here we show that the C. elegans cell-cell fusion protein EFF-1 is structurally homologous to viral class II fusion proteins. The 2.6 Å crystal structure of the EFF-1 trimer displays the same 3D fold and quaternary conformation of postfusion class II viral fusion proteins, although it lacks a nonpolar "fusion loop," indicating that it does not insert into the target membrane. EFF-1 was previously shown to be required in both cells for fusion, and we show that blocking EFF-1 trimerization blocks the fusion reaction. Together, these data suggest that whereas membrane fusion driven by viral proteins entails leveraging of a nonpolar loop, EFF-1-driven fusion of cells entails trans-trimerization such that transmembrane segments anchored in the two opposing membranes are brought into contact at the tip of the EFF-1 trimer to then, analogous to SNARE-mediated vesicle fusion, zip the two membranes into one.


Assuntos
Proteínas de Caenorhabditis elegans/química , Glicoproteínas de Membrana/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fusão Celular , Cristalografia por Raios X , Evolução Molecular , Células Gigantes/metabolismo , Fusão de Membrana , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Polimerização , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
11.
PLoS Pathog ; 9(9): e1003631, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086133

RESUMO

Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.


Assuntos
Vírus Hendra/química , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
PLoS One ; 8(8): e73572, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009757

RESUMO

The parallel ßhelix is a common fold among extracellular proteins, however its mechanical properties remain unexplored. In Gram-negative bacteria, extracellular proteins of diverse functions of the large 'TpsA' family all fold into long ßhelices. Here, single-molecule atomic force microscopy and steered molecular dynamics simulations were combined to investigate the mechanical properties of a prototypic TpsA protein, FHA, the major adhesin of Bordetella pertussis. Strong extension forces were required to fully unfold this highly repetitive protein, and unfolding occurred along a stepwise, hierarchical process. Our analyses showed that the extremities of the ßhelix unfold early, while central regions of the helix are more resistant to mechanical unfolding. In particular, a mechanically resistant subdomain conserved among TpsA proteins and critical for secretion was identified. This nucleus harbors structural elements packed against the ßhelix that might contribute to stabilizing the N-terminal region of FHA. Hierarchical unfolding of the ßhelix in response to a mechanical stress may maintain ß-helical portions that can serve as templates for regaining the native structure after stress. The mechanical properties uncovered here might apply to many proteins with ß-helical or related folds, both in prokaryotes and in eukaryotes, and play key roles in their structural integrity and functions.


Assuntos
Microscopia de Força Atômica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Proteínas/química , Proteínas de Bactérias/química , Glucosiltransferases/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Desnaturação Proteica
13.
J Virol ; 87(17): 9569-78, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23785215

RESUMO

Lettuce necrotic yellows virus (LNYV) is a prototype of the plant-adapted cytorhabdoviruses. Through a meta-prediction of disorder, we localized a folded C-terminal domain in the amino acid sequence of its phosphoprotein. This domain consists of an autonomous folding unit that is monomeric in solution. Its structure, solved by X-ray crystallography, reveals a lollipop-shaped structure comprising five helices. The structure is different from that of the corresponding domains of other Rhabdoviridae, Filoviridae, and Paramyxovirinae; only the overall topology of the polypeptide chain seems to be conserved, suggesting that this domain evolved under weak selective pressure and varied in size by the acquisition or loss of functional modules.


Assuntos
Fosfoproteínas/química , Vírus de Plantas/química , Rhabdoviridae/química , Proteínas Virais/química , Sequência de Aminoácidos , Cristalografia por Raios X , Evolução Molecular , Lactuca/virologia , Modelos Moleculares , Dados de Sequência Molecular , Fosfoproteínas/genética , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Rhabdoviridae/classificação , Rhabdoviridae/genética , Proteínas Virais/genética
14.
Nat Commun ; 4: 1612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511476

RESUMO

The 5'-untranslated region of the hepatitis C virus genome contains an internal ribosome entry site (IRES) that initiates cap-independent translation of the viral RNA. Until now, the structural characterization of the entire (IRES) remained limited to cryo-electron microscopy reconstructions of the (IRES) bound to different cellular partners. Here we report an atomic model of free full-length hepatitis C virus (IRES) refined by selection against small-angle X-ray scattering data that incorporates the known structures of different fragments. We found that an ensemble of conformers reproduces small-angle X-ray scattering data better than a single structure suggesting in combination with molecular dynamics simulations that the hepatitis C virus (IRES) is an articulated molecule made of rigid parts that move relative to each other. Principal component analysis on an ensemble of physically accessible conformers of hepatitis C virus (IRES) revealed dominant collective motions in the molecule, which may underlie the conformational changes occurring in the (IRES) molecule upon formation of the initiation complex.


Assuntos
Hepacivirus/genética , Ribossomos , Regiões 5' não Traduzidas , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Nat Commun ; 4: 1429, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23385574

RESUMO

The typical bullet shape of Rhabdoviruses is thought to rely on the matrix protein for stabilizing the nucleocapsid coil. Here we scrutinize the morphology of purified and recombinant nucleocapsids of vesicular stomatitis virus in vitro. We elucidate pH and ionic strength conditions for their folding into conical tips and further growth into whole bullets, and provide cryo-electron microscopy reconstructions of the bullet tip and the helical trunk. We address conformational variability of the reconstituted nucleocapsids and the issue of constraints imposed by the binding of matrix protein. Our findings bridge the gap between the isolated nucleoprotein-RNA string in its form of an undulating ribbon, and the tight bullet-shaped virion skeleton.


Assuntos
Nucleocapsídeo/ultraestrutura , Vírus da Estomatite Vesicular Indiana/ultraestrutura , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Nucleoproteínas/metabolismo , RNA Viral/ultraestrutura , Proteínas da Matriz Viral/metabolismo
16.
J Mol Biol ; 423(2): 182-97, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22789567

RESUMO

The phosphoprotein (P) is an essential component of the viral replication machinery of non-segmented negative-strand RNA viruses, connecting the viral polymerase to its nucleoprotein-RNA template and acting as a chaperone of the nucleoprotein by preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of vesicular stomatitis virus (VSV) forms homodimers and possesses a modular organization comprising two stable, well-structured domains concatenated with two intrinsically disordered regions. Here, we used a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering to depict VSV P as an ensemble of continuously exchanging conformers that captures the dynamic character of this protein. We discuss the implications of the dynamics and the large conformational space sampled by VSV P in the assembly and functioning of the viral transcription/replication machinery.


Assuntos
Fosfoproteínas/química , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas Estruturais Virais/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/metabolismo , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral
17.
Structure ; 20(3): 554-64, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405014

RESUMO

Hexameric DnaB helicases are often loaded at DNA replication forks by interacting with the initiator protein DnaA and/or a helicase loader (DnaC in Escherichia coli). These loaders are not universally required, and DnaB from Helicobacter pylori was found to bypass DnaC when expressed in E. coli cells. The crystal structure of Helicobacter pylori DnaB C-terminal domain (HpDnaB-CTD) reveals a large two-helix insertion (named HPI) in the ATPase domain that protrudes away from the RecA fold. Biophysical characterization and electron microscopy (EM) analysis of the full-length protein show that HpDnaB forms head-to-head double hexamers remarkably similar to helicases found in some eukaryotes, archaea, and viruses. The docking of the HpDnaB-CTD structure into EM reconstruction of HpDnaB provides a model that shows how hexamerization of the CTD is facilitated by HPI-HPI interactions. The HpDnaB double-hexamer architecture supports an alternative strategy to load bacterial helicases onto forks in the absence of helicase loaders.


Assuntos
DnaB Helicases/química , Helicobacter pylori/enzimologia , Modelos Moleculares , Conformação Proteica , Escherichia coli , Microscopia Eletrônica , Polimerização , Ligação Proteica , Origem de Replicação/genética
18.
Virologie (Montrouge) ; 16(4): 225-257, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065883

RESUMO

Viruses with a non-segmented negative-sense RNA genome, or Mononegavirales, are important pathogens for plants, animals and humans with major socio-economic and health impacts. Among them are well-known human pathogens such as measles, mumps and respiratory syncytial virus. Moreover, animal reservoirs appear much larger than previously thought, hence broadening the risk of emergence of life-threatening zoonotic viruses such as Rabies, Ebola, Marburg, Nipah or Hendra related viruses. These viruses have peculiar transcription and replication machinery that make them unique in the living world. Indeed, their genomic RNA, when naked, is non-infectious because it can be neither transcribed nor translated, and the L RNA-dependent RNA-polymerase is at best able to initiate the synthesis of an RNA copy of a few of tens of nucleotides in length. To serve as a template, the genomic RNA must be encapsidated in a helicoidal homopolymer made of a regular and continuous array of docked N protomers in which the ribose-phosphate backbone is fully embedded. This complex, or nucleocapsid, is recognized by the L polymerase thanks to its cofactor, the P protein, to sequentially transcribe the five genes into five processed mRNAs for the simplest viruses. Subsequently, a switch occurs and the polymerase replicates a full copy of antigenomic RNA that is concurrently encapsidated. This new template is then used for the production of new infectious genomic nucleocapsids. This review summarizes current structural, dynamic and functional data of this peculiar molecular machinery and provides a unified model of how it can function. It illuminates the overall common strategies and the subtle variations in the different viruses, along with the key role of the dual ordered/disordered structure of the protein components in the dynamics of the viral polymerase machinery.

19.
PLoS Pathog ; 7(9): e1002248, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21960769

RESUMO

Replication of non-segmented negative-strand RNA viruses requires the continuous supply of the nucleoprotein (N) in the form of a complex with the phosphoprotein (P). Here, we present the structural characterization of a soluble, heterodimeric complex between a variant of vesicular stomatitis virus N lacking its 21 N-terminal residues (N(Δ21)) and a peptide of 60 amino acids (P(60)) encompassing the molecular recognition element (MoRE) of P that binds RNA-free N (N(0)). The complex crystallized in a decameric circular form, which was solved at 3.0 Å resolution, reveals how the MoRE folds upon binding to N and competes with RNA binding and N polymerization. Small-angle X-ray scattering experiment and NMR spectroscopy on the soluble complex confirms the binding of the MoRE and indicates that its flanking regions remain flexible in the complex. The structure of this complex also suggests a mechanism for the initiation of viral RNA synthesis.


Assuntos
Complexos Multiproteicos/química , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , Vesiculovirus/química , Proteínas Estruturais Virais/química , Cristalografia por Raios X , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
20.
Virus Res ; 162(1-2): 126-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21963663

RESUMO

The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication.


Assuntos
Genes Virais , Subunidades Proteicas/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/genética , Transcrição Gênica , Proteínas Virais/genética , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Plantas , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Rhabdoviridae/química , Rhabdoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...