Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Ecol Evol ; 7(11): 1844-1855, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749400

RESUMO

The influence of depth and associated gradients in light, nutrients and plankton on the ecological organization of tropical reef communities was first described over six decades ago but remains untested across broad geographies. During this time humans have become the dominant driver of planetary change, requiring that we revisit historic ecological paradigms to ensure they capture the dynamics of contemporary ecological systems. Analysing >5,500 in-water reef fish surveys between 0 and 30 m depth on reef slopes of 35 islands across the Pacific, we assess whether a depth gradient consistently predicts variation in reef fish biomass. We reveal predictable ecological organization at unpopulated locations, with increased biomass of planktivores and piscivores and decreased primary consumer biomass with increasing depth. Bathymetric steepness also had a striking influence on biomass patterns, primarily for planktivores, emphasizing potential links between local hydrodynamics and the upslope propagation of pelagic subsidies to the shallows. However, signals of resource-driven change in fish biomass with depth were altered or lost for populated islands, probably due to depleted fish biomass baselines. While principles of depth zonation broadly held, our findings expose limitations of the paradigm for predicting ecological dynamics where human impacts confound connections between ecological communities and their surrounding environment.


Assuntos
Efeitos Antropogênicos , Recifes de Corais , Animais , Humanos , Ecossistema , Biomassa , Peixes
2.
Nature ; 621(7979): 536-542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558870

RESUMO

Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.


Assuntos
Antozoários , Conservação dos Recursos Naturais , Recifes de Corais , Calor Extremo , Aquecimento Global , Oceanos e Mares , Água do Mar , Animais , Conservação dos Recursos Naturais/métodos , Calor Extremo/efeitos adversos , Peixes , Aquecimento Global/estatística & dados numéricos , Objetivos , Havaí , Atividades Humanas , Cooperação Internacional , Água do Mar/análise , Água do Mar/química , Águas Residuárias/análise , Fatores de Tempo
3.
Sci Adv ; 9(24): eadd5032, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315146

RESUMO

Marine heatwaves are triggering coral bleaching events and devastating coral populations globally, highlighting the need to identify processes promoting coral survival. Here, we show that acceleration of a major ocean current and shallowing of the surface mixed layer enhanced localized upwelling on a central Pacific coral reef during the three strongest El Niño-associated marine heatwaves of the past half century. These conditions mitigated regional declines in primary production and bolstered local supply of nutritional resources to corals during a bleaching event. The reefs subsequently suffered limited post-bleaching coral mortality. Our results reveal how large-scale ocean-climate interactions affect reef ecosystems thousands of kilometers away and provide a valuable framework for identifying reefs that may benefit from such biophysical linkages during future bleaching events.


Assuntos
Antozoários , Animais , El Niño Oscilação Sul , Ecossistema , Recifes de Corais , Oceanos e Mares
4.
Med J (Ft Sam Houst Tex) ; (Per 23-4/5/6): 31-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042504

RESUMO

Creatine supplementation has not been researched for Traumatic Brain Injury (TBI) extensively, but studies suggest potential as a neuroprotective agent and potential treatment for brain-injury complications. Patients suffering from TBI experience mitochondrial dysfunction, neuropsychological burden, and deficits in cognitive performance due to malperformance of brain creatine levels, diminished brain Adenosine Triphosphate (ATP) levels, glutamate toxicity, and oxidative stress. In this systemic review, the current available research is reviewed to examine the effects of creatine on common sequalae of TBI within children, adolescents, and mice. Past and present data still lacks the knowledge of creatine supplementation for the adult population and military members during TBI. PubMed was searched for studies which assessed the correlation between creatine supplementation of TBI complications. The search strategy yielded 40 results, of which 15 articles were included in this systemic review. The results of the review supported an apparent understanding creatine does offer an obvious benefit to patients suffering from TBI and post-injury complications under specific guidelines. Time and dose dependent metabolic alterations seem to be only exceptionally prevalent when given as a prophylaxis or if given acutely. Results are only clinically significant after a month of supplementation. Although patients may need many therapeutic treatments to recover from TBI, especially in acute resuscitation, creatine shows superior efficacy as a neuroprotective agent in battling the chronic manifestations which lead to oxidative stress and cognitive function post brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Camundongos , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Creatina/uso terapêutico , Suplementos Nutricionais , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico
5.
Circ Cardiovasc Imaging ; 16(1): e014071, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649453

RESUMO

Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.


Assuntos
Insuficiência Cardíaca , Miocardite , Humanos , Proteômica , Coração , Insuficiência Cardíaca/diagnóstico por imagem , Miocardite/tratamento farmacológico , Inflamação
6.
Proc Natl Acad Sci U S A ; 119(19): e2123331119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500122

RESUMO

Corals are a major habitat-building life-form on tropical reefs that support a quarter of all species in the ocean and provide ecosystem services to millions of people. Marine heat waves continue to threaten and shape reef ecosystems by killing individual coral colonies and reducing their diversity. However, marine heat waves are spatially and temporally heterogeneous, and so too are the environmental and biological factors mediating coral resilience during and following thermal events. This combination results in highly variable outcomes at both the coral bleaching and mortality stages of every event. This, in turn, impedes the assessment of changing reef-scale patterns of thermal tolerance or places of resistance known as reef refugia. We developed a large-scale, high-resolution coral mortality monitoring capability based on airborne imaging spectroscopy and applied it to a major marine heat wave in the Hawaiian Islands. While water depth and thermal stress strongly mediated coral mortality, relative coral loss was also inversely correlated with preheat-wave coral cover, suggesting the existence of coral refugia. Subsequent mapping analyses indicated that potential reef refugia underwent up to 40% lower coral mortality compared with neighboring reefs, despite similar thermal stress. A combination of human and environmental factors, particularly coastal development and sedimentation levels, differentiated resilient reefs from other more vulnerable reefs. Our findings highlight the role that coral mortality mapping, rather than bleaching monitoring, can play for targeted conservation that protects more surviving corals in our changing climate.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Temperatura Alta , Refúgio de Vida Selvagem
7.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35178561

RESUMO

Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets. We demonstrate that human pluripotent stem cell-derived extra-embryonic-like and intra-embryonic-like hematopoietic progenitors differentiate into morphologically, transcriptionally and functionally distinct macrophage populations. Single-cell RNA sequencing of developing and mature cultures uncovered distinct developmental trajectories and gene expression programs of macrophages derived from extra-embryonic-like and intra-embryonic-like hematopoietic progenitors. These findings establish a resource for the generation of human tissue resident-like macrophages to study their specification and function under defined conditions and to explore their potential use in tissue engineering and regenerative medicine applications.


Assuntos
Macrófagos , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Hematopoese , Homeostase , Humanos , Macrófagos/metabolismo
8.
Creat Nurs ; 28(1): 69-73, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173065

RESUMO

Many professional medical and nursing organizations call for the reform and revision of formal nursing education. As nursing faculty work to prepare the next generations of nurses, the model of Relationship-Based Care is an ideal infrastructure for curriculum design. This paper responds to the call for transforming nursing education with a model that includes love, Relationship-Based Care, the I2E2 Model of Change, and an academic-practice partnership.


Assuntos
Bacharelado em Enfermagem , Educação em Enfermagem , Estudantes de Enfermagem , Currículo , Docentes de Enfermagem , Humanos , Amor
10.
PLoS One ; 16(5): e0251616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956878

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0061974.].

11.
Sci Rep ; 11(1): 3197, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542255

RESUMO

Most marine animals have a pelagic larval phase that develops in the coastal or open ocean. The fate of larvae has profound effects on replenishment of marine populations that are critical for human and ecosystem health. Larval ecology is expected to be tightly coupled to oceanic features, but for most taxa we know little about the interactions between larvae and the pelagic environment. Here, we provide evidence that surface slicks, a common coastal convergence feature, provide nursery habitat for diverse marine larvae, including > 100 species of commercially and ecologically important fishes. The vast majority of invertebrate and larval fish taxa sampled had mean densities 2-110 times higher in slicks than in ambient water. Combining in-situ surveys with remote sensing, we estimate that slicks contain 39% of neustonic larval fishes, 26% of surface-dwelling zooplankton (prey), and 75% of floating organic debris (shelter) in our 1000 km2 study area in Hawai'i. Results indicate late-larval fishes actively select slick habitats to capitalize on concentrations of diverse prey and shelter. By providing these survival advantages, surface slicks enhance larval supply and replenishment of adult populations from coral reef, epipelagic, and deep-water ecosystems. Our findings suggest that slicks play a critically important role in enhancing productivity in tropical marine ecosystems.

12.
Proc Natl Acad Sci U S A ; 117(52): 33711-33718, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318215

RESUMO

Coral is the life-form that underpins the habitat of most tropical reef ecosystems, thereby supporting biological diversity throughout the marine realm. Coral reefs are undergoing rapid change from ocean warming and nearshore human activities, compromising a myriad of services provided to societies including coastal protection, fishing, and cultural practices. In the face of these challenges, large-scale operational mapping of live coral cover within and across reef ecosystems could provide more opportunities to address reef protection, resilience, and restoration at broad management- and policy-relevant scales. We developed an airborne mapping approach combining laser-guided imaging spectroscopy and deep learning models to quantify, at a large archipelago scale, the geographic distribution of live corals to 16-m water depth throughout the main Hawaiian islands. Airborne estimates of live coral cover were highly correlated with field-based estimates of live coral cover (R2 = 0.94). Our maps were used to assess the relative condition of reefs based on live coral, and to identify potential coral refugia in the face of human-driven stressors, including marine heat waves. Geospatial modeling revealed that water depth, wave power, and nearshore development accounted for the majority (>60%) of live coral cover variation, but other human-driven factors were also important. Mapped interisland and intraisland variation in live coral location improves our understanding of reef geography and its human impacts, thereby guiding environmental management for reef resiliency.


Assuntos
Antozoários/fisiologia , Conservação dos Recursos Naturais , Recifes de Corais , Animais , Ilhas , Modelos Biológicos , Reprodutibilidade dos Testes
13.
Proc Natl Acad Sci U S A ; 116(48): 24143-24149, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712423

RESUMO

Life for many of the world's marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales. Slicks had higher densities of marine phytoplankton (1.7-fold), zooplankton (larval fish prey; 3.7-fold), and larval fish (8.1-fold) than nearby ambient waters across our study region in Hawai'i. Slicks contained larger, more well-developed individuals with competent swimming abilities compared to ambient waters, suggesting a physiological benefit to increased prey resources. Slicks also disproportionately accumulated prey-size plastics, resulting in a 60-fold higher ratio of plastics to larval fish prey than nearby waters. Dissections of hundreds of larval fish found that 8.6% of individuals in slicks had ingested plastics, a 2.3-fold higher occurrence than larval fish from ambient waters. Plastics were found in 7 of 8 families dissected, including swordfish (Xiphiidae), a commercially targeted species, and flying fish (Exocoetidae), a principal prey item for tuna and seabirds. Scaling up across an ∼1,000 km2 coastal ecosystem in Hawai'i revealed slicks occupied only 8.3% of ocean surface habitat but contained 42.3% of all neustonic larval fish and 91.8% of all floating plastics. The ingestion of plastics by larval fish could reduce survivorship, compounding threats to fisheries productivity posed by overfishing, climate change, and habitat loss.


Assuntos
Peixes/fisiologia , Larva , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Tamanho Corporal , Exposição Dietética/análise , Ecotoxicologia , Monitoramento Ambiental/métodos , Pesqueiros , Peixes/crescimento & desenvolvimento , Havaí , Fitoplâncton , Plásticos/toxicidade , Comportamento Predatório , Natação , Poluentes Químicos da Água/toxicidade , Zooplâncton
14.
JMIR Ment Health ; 6(5): e12617, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066704

RESUMO

BACKGROUND: The use of smartphone apps to monitor and deliver health care guidance and interventions has received considerable attention recently, particularly with regard to behavioral disorders, stress relief, negative emotional state, and poor mood in general. Unfortunately, there is little research investigating the long-term and repeated effects of apps meant to impact mood and emotional state. OBJECTIVE: We aimed to investigate the effects of both immediate point-of-intervention and long-term use (ie, at least 10 engagements) of a guided meditation and mindfulness smartphone app on users' emotional states. Data were collected from users of a mobile phone app developed by the company Stop, Breathe & Think (SBT) for achieving emotional wellness. To explore the long-term effects, we assessed changes in the users' basal emotional state before they completed an activity (eg, a guided meditation). We also assessed the immediate effects of the app on users' emotional states from preactivity to postactivity. METHODS: The SBT app collects information on the emotional state of the user before and after engagement in one or several mediation and mindfulness activities. These activities are recommended and provided by the app based on user input. We considered data on over 120,000 users of the app who collectively engaged in over 5.5 million sessions with the app during an approximate 2-year period. We focused our analysis on users who had at least 10 engagements with the app over an average of 6 months. We explored the changes in the emotional well-being of individuals with different emotional states at the time of their initial engagement with the app using mixed-effects models. In the process, we compared 2 different methods of classifying emotional states: (1) an expert-defined a priori mood classification and (2) an empirically driven cluster-based classification. RESULTS: We found that among long-term users of the app, there was an association between the length of use and a positive change in basal emotional state (4% positive mood increase on a 2-point scale every 10 sessions). We also found that individuals who were anxious or depressed tended to have a favorable long-term emotional transition (eg, from a sad emotional state to a happier emotional state) after using the app for an extended period (the odds ratio for achieving a positive emotional state was 3.2 and 6.2 for anxious and depressed individuals, respectively, compared with users with fewer sessions). CONCLUSIONS: Our analyses provide evidence for an association between both immediate and long-term use of an app providing guided meditations and improvements in the emotional state.

15.
Proc Biol Sci ; 286(1896): 20182544, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963937

RESUMO

Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Aprendizado de Máquina , Biofísica , Havaí , Modelos Biológicos
16.
Child Dev ; 90(2): e230-e245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29516467

RESUMO

Little research exists on how immigrant children develop their beliefs about school learning (BASLs) in their home and host cultures. We examined the BASLs and achievement children of Chinese immigrants' (CCI) and European American (EA) children. We followed longitudinally 120 middle-class children from age 4 to 5, balanced for gender. Children heard two story beginnings depicting a child eager to attend school and another not. Children completed the stories and were tested for math and literacy achievement. We found seven BASLs. CCIs and EAs showed similar BASLs. Awareness of parental involvement and intellectual benefit consistently explained their achievement, with CCIs showing greater achievement. CCIs' (but not EAs') valuation of learning explained their net academic growth. Implications on CCIs' development are discussed.


Assuntos
Sucesso Acadêmico , Atitude , Emigrantes e Imigrantes , Aprendizagem , Alfabetização , Matemática , Pais , Asiático , Pré-Escolar , China/etnologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Instituições Acadêmicas , População Branca
17.
Sci Rep ; 8(1): 16943, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446687

RESUMO

Coral reefs worldwide face an uncertain future with many reefs reported to transition from being dominated by corals to macroalgae. However, given the complexity and diversity of the ecosystem, research on how regimes vary spatially and temporally is needed. Reef regimes are most often characterised by their benthic components; however, complex dynamics are associated with losses and gains in both fish and benthic assemblages. To capture this complexity, we synthesised 3,345 surveys from Hawai'i to define reef regimes in terms of both fish and benthic assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and were spatially heterogeneous by island, depth and exposure. We identified a regime characteristic of a degraded state with low coral cover and fish biomass, one that had low coral but high fish biomass, as well as three other regimes that varied significantly in their ecology but were previously considered a single coral dominated regime. Analyses of time series data reflected complex system dynamics, with multiple transitions among regimes that were a function of both local and global stressors. Coupling fish and benthic communities into reef regimes to capture complex dynamics holds promise for monitoring reef change and guiding ecosystem-based management of coral reefs.


Assuntos
Biodiversidade , Recifes de Corais , Ecossistema , Peixes , Animais , Geografia , Havaí , Ilhas
18.
Nat Neurosci ; 21(9): 1185-1195, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150662

RESUMO

We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Transcriptoma , Adulto , Idoso , Axônios/ultraestrutura , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Biblioteca Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , RNA/análise , RNA/genética , Análise de Sequência de RNA
19.
Artigo em Inglês | MEDLINE | ID: mdl-30034077

RESUMO

A transparent highly mineralized outer surface zone is formed on caries lesions during remineralization that reduces the permeability to water and plaque generated acids. However, it has not been established how thick the surface zone should be to inhibit the penetration of these fluids. Near-IR (NIR) reflectance coupled with dehydration can be used to measure changes in the fluid permeability of lesions in enamel and dentin. Based on our previous studies, we postulate that there is a strong correlation between the surface layer thickness and the rate of dehydration. In this study, the rates of dehydration for simulated lesions in enamel with varying remineralization durations were measured. Reflectance imaging at NIR wavelengths from 1400-2300 nm, which coincides with higher water absorption and manifests the greatest sensitivity to contrast changes during dehydration measurements, was used to image simulated enamel lesions. The results suggest that the relationship between surface zone thickness and lesion permeability is highly non-linear, and that a small increase in the surface layer thickness may lead to a significant decrease in permeability.

20.
PLoS One ; 13(3): e0189792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494613

RESUMO

A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location-the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002-2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O'ahu, where 70% of the state's population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs.


Assuntos
Recifes de Corais , Mapeamento Geográfico , Aquicultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Havaí , Humanos , Espécies Introduzidas , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA