Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562733

RESUMO

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

2.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479391

RESUMO

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/genética , Mamíferos , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Drosophila
3.
Brain ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489591

RESUMO

Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. Recent years altered this perception, as a growing number of leukodystrophies was described to have an onset at adult ages. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic Cerebral Amyloid Angiopathy that was found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid-old adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles, and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later on displayed severe degeneration and loss. In addition, despite loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of Cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.

4.
Genet Med ; : 101126, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38529886

RESUMO

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog (SHH), a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with DISP1 variants. METHODS: This study was based on the identification of at least one pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor (SMMCI), and congenital nasal pyriform aperture stenosis (CNPAS). These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (i.e. oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of SHH. We also demonstrated that the very rare SMMCI-CNPAS combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.

5.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
6.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
7.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260255

RESUMO

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

8.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284452

RESUMO

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cuidadores , Pré-Escolar , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/terapia , RNA Helicases DEAD-box , Autorrelato , Lactente
9.
Genet Med ; 26(5): 101087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Interneurônios , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Epilepsia/genética , Epilepsia/patologia , Masculino , Feminino , Interneurônios/metabolismo , Interneurônios/patologia , Criança , Pré-Escolar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Mutação de Sentido Incorreto/genética , Heterozigoto , Adolescente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
10.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

11.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503210

RESUMO

Dysmorphologists sometimes encounter challenges in recognizing disorders due to phenotypic variability influenced by factors such as age and ethnicity. Moreover, the performance of Next Generation Phenotyping Tools such as GestaltMatcher is dependent on the diversity of the training set. Therefore, we developed GestaltMatcher Database (GMDB) - a global reference for the phenotypic variability of rare diseases that complies with the FAIR-principles. We curated dysmorphic patient images and metadata from 2,224 publications, transforming GMDB into an online dynamic case report journal. To encourage clinicians worldwide to contribute, each case can receive a Digital Object Identifier (DOI), making it a citable micro-publication. This resulted in a collection of 2,312 unpublished images, partly with longitudinal data. We have compiled a collection of 10,189 frontal images from 7,695 patients representing 683 disorders. The web interface enables gene- and phenotype-centered queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant European ancestry of most patients (59%), our global collaborations have facilitated the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% African, and 6% with other ethnic backgrounds. The analysis has revealed a significant enhancement in GestaltMatcher performance across all ethnic groups, incorporating non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved without altering the performance metrics for European patients. GMDB addresses dysmorphology challenges by representing phenotypic variability and including underrepresented groups, enhancing global diagnostic rates and serving as a vital clinician reference database.

12.
Z Kinder Jugendpsychiatr Psychother ; 52(1): 43-59, 2024 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-37641943

RESUMO

Genetic Diagnostics in Everyday Clinical Practice in Child and Adolescent Psychiatry: Indications, Framework Conditions, Hurdles, and Proposed Solutions Abstract: Health insurance covers medically necessary genetic testing in Germany. Diagnostic genetic testing has become increasingly important for child and adolescent psychiatry (CAP), reflected by the rising number of national guidelines relevant to CAP, including genetic testing in the recommended diagnostic work-up. However, implementation of theses guidelines in routine clinical care is lacking. This article provides a concise overview of the relevance of genetic testing in CAP-related national guidelines. It outlines the legal and financial framework for genetic testing in Germany. Furthermore, it points out barriers to implementation and offers potential solutions. It then provides examples from clinical practice highlighting the potential benefits patients and their family members might have from receiving a genetic diagnosis. The article closes by outlining future CAP-relevant areas in which genetic testing may become clinically relevant.


Assuntos
Psiquiatria Infantil , Psiquiatria , Adolescente , Criança , Humanos , Psiquiatria do Adolescente , Família , Alemanha
13.
Genome Med ; 15(1): 102, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031187

RESUMO

BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".


Assuntos
Proteínas , Peixe-Zebra , Animais , Humanos , Frequência do Gene , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Fenótipo , Proteínas/genética , Peixe-Zebra/genética
14.
Pediatr Neurol ; 148: 164-171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734130

RESUMO

BACKGROUND: RAB11B was described previously once with a severe form of intellectual disability. We aim at validation and delineation of the role of RAB11B in neurodevelopmental disorders. METHODS: We present seven novel individuals with disease-associated variants in RAB11B when compared with the six cases described in the literature. We performed a cross-sectional analysis to identify the clinical spectrum and the core phenotype. Additionally, structural effects of the variants were assessed by molecular modeling. RESULTS: Seven distinct de novo missense variants were identified, three of them recurrent (p.(Gly21Arg), p.(Val22Met), and p.(Ala68Thr)). Molecular modeling suggests that those variants either affect the nucleotide binding (at amino acid positions 21, 22, 33, 68) or the interaction with effector molecules (at positions 72 and 75). Our data confirmed the main manifestations as neurodevelopmental disorder with intellectual disability (85%), muscular hypotonia (83%), structural brain anomalies (77%), and visual impairment (70%). Combined analysis indicates a genotype-phenotype correlation; variants impacting the nucleotide binding cause a severe phenotype with intellectual disability, and variants outside the binding pocket lead to a milder phenotype with epilepsy. CONCLUSIONS: We confirm that disease-associated missense variants in RAB11B cause a neurodevelopmental disorder and suggest a genotype-phenotype correlation based on the impact on nucleotide binding functionality of RAB11B.

15.
Ann Neurol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606373

RESUMO

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

16.
Genet Med ; 25(11): 100950, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551667

RESUMO

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Micrognatismo , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Face , Micrognatismo/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Fácies , Fenótipo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
17.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544411

RESUMO

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Pancitopenia , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Linfo-Histiocitose Hemofagocítica/genética , Células HEK293 , Proteínas Reguladoras de Apoptose/genética , Mutação , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Proteínas de Neoplasias/genética
18.
Eur J Hum Genet ; 31(10): 1154-1164, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460657

RESUMO

Iterative re-analysis of NGS results is not well investigated for published research cohorts of rare diseases. We revisited a cohort of 152 consanguineous families with developmental disorders (NDD) reported five years ago. We re-evaluated all reported variants according to diagnostic classification guidelines or our candidate gene scoring system (AutoCaSc) and systematically scored the validity of gene-disease associations (GDA). Sequencing data was re-processed using an up-to-date pipeline for case-level re-analysis. In 28/152 (18%) families, we identified a clinically relevant change. Ten previously reported (likely) pathogenic variants were re-classified as VUS/benign. In one case, the GDA (TSEN15) validity was judged as limited, and in five cases GDAs are meanwhile established. We identified 12 new disease causing variants. Two previously reported variants were missed by our updated pipeline due to alignment or reference issues. Our results support the need to re-evaluate screening studies, not only the negative cases but including supposedly solved ones. This also applies in a diagnostic setting. We highlight that the complexity of computational re-analysis for old data should be weighed against the decreasing re-testing costs. Since extensive re-analysis per case is beyond the resources of most institutions, we recommend a screening procedure that would quickly identify the majority (83%) of new variants.


Assuntos
Endonucleases , Exoma , Humanos , Consanguinidade , Custos e Análise de Custo , Endonucleases/genética
19.
Genet Med ; 25(8): 100885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165955

RESUMO

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética
20.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...