Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Comput Biol Med ; 171: 108185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401454

RESUMO

BACKGROUND: Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. METHODS AND RESULTS: Here, we developed three machine learning models-random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. CONCLUSIONS: Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Feminino , Adulto , Animais , Humanos , Bovinos , Suínos , Streptococcus agalactiae/genética , Infecções Estreptocócicas/veterinária , Genômica , Peixes , Aprendizado de Máquina
2.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019122

RESUMO

Streptococcus agalactiae (group B Streptococcus, GBS) has recently emerged as an important pathogen among adults. However, it is overlooked in this population, with all global efforts being directed towards its containment among pregnant women and neonates. This systematic review assessed the molecular epidemiology and compared how the lineages circulating among non-pregnant populations relate to those of pregnant and neonatal populations worldwide. A systematic search was performed across nine databases from 1 January 2000 up to and including 20 September 2021, with no language restrictions. The Joanna Briggs Institute (JBI) Prevalence Critical Appraisal Tool (PCAT) was used to assess the quality of included studies. The global population structure of GBS from the non-pregnant population was analysed using in silico typing and phylogenetic reconstruction tools. Twenty-four articles out of 13 509 retrieved across 9 databases were eligible. Most studies were conducted in the World Health Organization European region (12/24, 50 %), followed by the Western Pacific region (6/24, 25 %) and the Americas region (6/24, 25 %). Serotype V (23%, 2310/10240) and clonal complex (CC) 1 (29 %, 2157/7470) were the most frequent serotype and CC, respectively. The pilus island PI1 : PI2A combination (29 %, 3931/13751) was the most prevalent surface protein gene, while the tetracycline resistance tetM (55 %, 5892/10624) was the leading antibiotic resistance gene. This study highlights that, given the common serotype distribution identified among non-pregnant populations (V, III, Ia, Ib, II and IV), vaccines including these six serotypes will provide broad coverage. The study indicates advanced molecular epidemiology studies, especially in resource-constrained settings for evidence-based decisions. Finally, the study shows that considering all at-risk populations in an inclusive approach is essential to ensure the sustainable containment of GBS.


Assuntos
Antibacterianos , Streptococcus agalactiae , Gravidez , Adulto , Recém-Nascido , Humanos , Feminino , Streptococcus agalactiae/genética , Epidemiologia Molecular , Filogenia , Bases de Dados Factuais
3.
Front Microbiol ; 14: 1185753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275158

RESUMO

Introduction: Maternal immunization against Group B Streptococcus (GBS) has the potential to significantly reduce the burden of neonatal GBS infections. Population genetics of GBS from maternal carriage can offer key insights into vaccine target distribution. Methods: In this study we characterized the population structure of GBS isolates from maternal carriage (n = 535) in an ethnically diverse community in London, using whole genome sequencing. Results: The isolates clustered into nine clonal complexes (CCs) but the majority (95%) belonged to five lineages: CC1 (26%), CC19 (26%), CC23 (20%), CC17 (13%) and CC8/10 (10%). Nine serotypes were identified, the most common were serotypes III (26%), V (21%), II (19%) and Ia (19%). Other serotypes (Ib, IV, VI, VII, IX) represented less than 10% of all isolates each. Intra-lineage serotype diversity was observed in all major CCs but was highest in CC1, which revealed nine serotypes. Nearly all isolates (99%) carried at least one of the four alpha family protein genes (alpha, alp1, alp23, and rib). All isolates were susceptible to penicillin. We found 21% and 13% of isolates to be resistant to clarithromycin and clindamycin, respectively. Prevalence of macrolide-lincosamide-streptogramin B (MLSB) resistance genes was 22% and they were most common in CC19 (37%) and CC1 (28%), and isolates with serotypes V (38%) and IV (32%). We identified some associations between maternal ethnicity and GBS population structure. Serotype Ib was significantly less common among the South Asian compared to Black women (S. Asian: 3/142, Black: 15/135, p = 0.03). There was also a significantly lower proportion of CC1 isolates among the White other (24/142) in comparison to Black (43/135) and S. Asian (44/142) women (p = 0.04). We found a significantly higher proportion of CC17 isolates among the White other compared to S. Asian women (White other: 32/142, S. Asian: 10/142, p = 0.004). Conclusion: Our study showed high prevalence of GBS vaccine targets among isolates from pregnant women in London. However, the observed serotype diversity in CC1 and high prevalence of MLSB resistance genes in CC19 demonstrates presence of high risk lineages, which might act as a reservoir of non-vaccine strains and antimicrobial resistance determinants.

4.
Nat Commun ; 13(1): 4215, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864107

RESUMO

Group B Streptococcus (GBS), or Streptococcus agalactiae, is a pathogen that causes preterm births, stillbirths, and acute invasive neonatal disease burden and mortality. Here, we investigate bacterial genetic signatures associated with disease onset time and meningeal tissue infection in acute invasive neonatal GBS disease. We carry out a genome-wide association study (GWAS) of 1,338 GBS isolates from newborns with acute invasive disease; the isolates had been collected annually, for 30 years, through a national bacterial surveillance program in the Netherlands. After controlling for the population structure, we identify genetic variation within noncoding and coding regions, particularly the capsule biosynthesis locus, statistically associated with neonatal GBS disease onset time and meningeal invasion. Our findings highlight the impact of integrating microbial population genomics and clinical pathogen surveillance, and demonstrate the effect of GBS genetics on disease pathogenesis in neonates and infants.


Assuntos
Doenças do Recém-Nascido , Infecções Estreptocócicas , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Metagenômica , Infecções Estreptocócicas/genética , Streptococcus agalactiae/genética
5.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677330

RESUMO

(1) Background: Streptococcus agalactiae or Group B Streptococcus (GBS) causes severe neonatal infections with a high burden of disease, especially in Africa. Maternal vaginal colonization and perinatal transmissions represent the common mode of acquiring the infection. Development of an effective maternal vaccine against GBS relies on molecular surveillance of the maternal GBS population to better understand the global distribution of GBS clones and serotypes. (2) Methods: Here, we present genomic data from a collection of colonizing GBS strains from Ismailia, Egypt that were sequenced and characterized within the global JUNO project. (3) Results: A large proportion of serotype VI, ST14 strains was discovered, a serotype which is rarely found in strain collections from the US and Europe and typically not included in the current vaccine formulations. (4) Conclusions: The molecular epidemiology of these strains clearly points to the African origin with the detection of several sequence types (STs) that have only been observed in Africa. Our data underline the importance of continuous molecular surveillance of the GBS population for future vaccine implementations.

6.
J Microbiol Methods ; 190: 106322, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506810

RESUMO

Group B Streptococcus (GBS) is a leading cause of neonatal meningitis, pneumonia, and sepsis. The biggest contributing factor of neonatal infections is due to vertical transmission from maternal colonisation of GBS in the genitourinary tract. Multiple serotype colonisation is often not investigated in epidemiological studies, but it is an important consideration for serotype-based vaccine development and implementation to ensure less abundant serotypes are not under-represented. In this study, we show that RAPD PCR is a quick tool useful in screening the presence of genetically different strains using multiple colony picks from a single patient swab. We observed a maximum of five different GBS strains colonising a single patient at a specific time.


Assuntos
Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Streptococcus agalactiae/genética , Streptococcus agalactiae/isolamento & purificação , DNA Bacteriano , Feminino , Humanos , Lactente , Leite Humano/microbiologia , Nasofaringe/microbiologia , Polimorfismo de Nucleotídeo Único , Reto/microbiologia , Sorogrupo , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Vagina/microbiologia , Sequenciamento Completo do Genoma
7.
BMC Infect Dis ; 21(1): 348, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849482

RESUMO

BACKGROUND: Staphylococcus aureus has been associated with the exacerbation and severity of atopic dermatitis (AD). Studies have not investigated the colonisation dynamics of S. aureus lineages in African toddlers with AD. We determined the prevalence and population structure of S. aureus in toddlers with and without AD from rural and urban South African settings. METHODS: We conducted a study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban Cape Town, South Africa. S. aureus was screened from skin and nasal specimens using established microbiological methods and clonal lineages were determined by spa typing. Logistic regression analyses were employed to assess risk factors associated with S. aureus colonisation. RESULTS: S. aureus colonisation was higher in cases compared to controls independent of geographic location (54% vs. 13%, p < 0.001 and 70% vs. 35%, p = 0.005 in Umtata [rural] and Cape Town [urban], respectively). Severe AD was associated with higher colonisation compared with moderate AD (86% vs. 52%, p = 0.015) among urban cases. Having AD was associated with colonisation in both rural (odds ratio [OR] 7.54, 95% CI 2.92-19.47) and urban (OR 4.2, 95% CI 1.57-11.2) toddlers. In rural toddlers, living in an electrified house that uses gas (OR 4.08, 95% CI 1.59-10.44) or utilises kerosene and paraffin (OR 2.88, 95% CI 1.22-6.77) for heating and cooking were associated with increased S. aureus colonisation. However, exposure to farm animals (OR 0.3, 95% CI 0.11-0.83) as well as living in a house that uses wood and coal (OR 0.14, 95% CI 0.04-0.49) or outdoor fire (OR 0.31, 95% CI 0.13-0.73) were protective. Spa types t174 and t1476, and t272 and t1476 were dominant among urban and rural cases, respectively, but no main spa type was observed among controls, independent of geographic location. In urban cases, spa type t002 and t442 isolates were only identified in severe AD, t174 was more frequent in moderate AD, and t1476 in severe AD. CONCLUSION: The strain genotype of S. aureus differed by AD phenotypes and rural-urban settings. Continued surveillance of colonising S. aureus lineages is key in understanding alterations in skin microbial composition associated with AD pathogenesis and exacerbation.


Assuntos
Dermatite Atópica/patologia , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/isolamento & purificação , Pré-Escolar , Estudos Transversais , Dermatite Atópica/complicações , Feminino , Genótipo , Humanos , Lactente , Modelos Logísticos , Masculino , Fatores de Risco , População Rural , Índice de Gravidade de Doença , Pele/microbiologia , África do Sul/epidemiologia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , População Urbana
8.
Nat Commun ; 12(1): 1523, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750782

RESUMO

Enterococcus faecalis is a commensal and nosocomial pathogen, which is also ubiquitous in animals and insects, representing a classical generalist microorganism. Here, we study E. faecalis isolates ranging from the pre-antibiotic era in 1936 up to 2018, covering a large set of host species including wild birds, mammals, healthy humans, and hospitalised patients. We sequence the bacterial genomes using short- and long-read techniques, and identify multiple extant hospital-associated lineages, with last common ancestors dating back as far as the 19th century. We find a population cohesively connected through homologous recombination, a metabolic flexibility despite a small genome size, and a stable large core genome. Our findings indicate that the apparent hospital adaptations found in hospital-associated E. faecalis lineages likely predate the "modern hospital" era, suggesting selection in another niche, and underlining the generalist nature of this nosocomial pathogen.


Assuntos
Infecção Hospitalar/microbiologia , Enterococcus faecalis/genética , Animais , Antibacterianos , Aves , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Genes MDR/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Hospitais , Especificidade de Hospedeiro , Humanos , Filogenia , Fatores de Virulência , Sequenciamento Completo do Genoma
9.
Lancet Microbe ; 2(1): e32-e40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544227

RESUMO

BACKGROUND: Streptococcus agalactiae (group B streptococcus) causes invasive disease in all age groups. In the Netherlands, the incidence of group B streptococcal sepsis in early infancy is increasing because of a specific genetic subtype, clonal complex (CC) 17-A1. We assessed the molecular epidemiology, incidence, and mortality of group B streptococcal meningitis in the Netherlands over 30 years. METHODS: We used nationwide surveillance data from Jan 1, 1987, to Dec 31, 2016, on all group B streptococcal meningitis and sepsis cases. The surveillance database of the Netherlands Reference Laboratory for Bacterial Meningitis-which receives approximately 90% of cerebrospinal fluid isolates from all patients with bacterial meningitis in the Netherlands-was the data source for the study. All patients with group B streptococcus-positive cerebrospinal fluid cultures (meningitis) and infants (0-89 days) with group B streptococcus-positive blood cultures (sepsis) were included. Patients with missing date of birth were excluded. Multi-locus sequence typing and clade profiles were extracted from whole genome sequences. Serotyping was done by latex agglutination and genome sequencing. Survival data was obtained through Municipal Personal Records. FINDINGS: 1501 episodes in 1490 patients were identified: 626 meningitis cases (in patients of all ages) and 875 sepsis cases (in patients aged 0-89 days). Mean annual group B streptococcal meningitis incidence was 1·32 per 1 000 000 population. CC17-A1 caused 16 (5%) of 307 meningitis cases in the first half of the study and 77 (26%) of 296 meningitis cases in the second half of the observation period (p<0·0001). Because of a simultaneous decline in CC19, the overall meningitis incidence remained stable. 27 (8%) of 323 patients with meningitis younger than 3 months died and 14 (21%) of 66 patients older than 3 months died. Patients older than 65 years with sequence type (ST) 24 disease were independently associated with death. Serotype III and ST17 were associated with meningitis in early infancy, serotype III remained associated with meningitis in children younger than 3 months after correcting for ST17 (odds ratio 3·71, 95%CI 2·75-5·01). Serotype Ia, Ib, II, III, and V accounted for 98% of the meningitis cases in patients younger than 3 months and 92% cases in patients older than 3 months. INTERPRETATION: CC17-A1 is an increasing cause of group B streptococcal meningitis in all age groups. A pentavalent polysaccharide vaccine would cover most meningitis cases. FUNDING: Netherlands Organization for Health Research and Development and Amsterdam University Medical Centres.


Assuntos
Meningites Bacterianas , Sepse , Infecções Estreptocócicas , Criança , Humanos , Lactente , Meningites Bacterianas/epidemiologia , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Países Baixos/epidemiologia , Sepse/epidemiologia , Infecções Estreptocócicas/epidemiologia , Streptococcus agalactiae/genética
10.
Nat Rev Microbiol ; 18(9): 539, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32724190

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Sci Rep ; 10(1): 9539, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533007

RESUMO

Group B streptococcus (GBS) is the leading cause of neonatal invasive disease worldwide. In the Netherlands incidence of the disease increased despite implementation of preventive guidelines. We describe a genomic analysis of 1345 GBS isolates from neonatal (age 0-89 days) invasive infections in the Netherlands reported between 1987 and 2016. Most isolates clustered into one of five major lineages: CC17 (39%), CC19 (25%), CC23 (18%), CC10 (9%) and CC1 (7%). There was a significant rise in the number of infections due to isolates from CC17 and CC23. Phylogenetic clustering analysis revealed that this was caused by expansion of specific sub-lineages, designated CC17-A1, CC17-A2 and CC23-A1. Dating of phylogenetic trees estimated that these clones diverged in the 1960s/1970s, representing historical rather than recently emerged clones. For CC17-A1 the expansion correlated with acquisition of a new phage, carrying gene encoding a putative cell-surface protein. Representatives of CC17-A1, CC17-A2 and CC23-A1 clones were identified in datasets from other countries demonstrating their global distribution.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Feminino , Genômica/métodos , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Tipagem de Sequências Multilocus , Países Baixos , Filogenia , Sorogrupo
13.
Microb Genom ; 6(4)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32213258

RESUMO

Escherichia coli sequence type 131 (ST131) is a pandemic clone that is evolving rapidly with increasing levels of antimicrobial resistance. Here, we investigated an outbreak of E. coli ST131 producing extended spectrum ß-lactamases (ESBLs) in a long-term care facility (LTCF) in Ireland by combining data from this LTCF (n=69) with other Irish (n=35) and global (n=690) ST131 genomes to reconstruct the evolutionary history and understand changes in population structure and genome architecture over time. This required a combination of short- and long-read genome sequencing, de novo assembly, read mapping, ESBL gene screening, plasmid alignment and temporal phylogenetics. We found that Clade C was the most prevalent (686 out of 794 isolates, 86 %) of the three major ST131 clades circulating worldwide (A with fimH41, B with fimH22, C with fimH30), and was associated with the presence of different ESBL alleles, diverse plasmids and transposable elements. Clade C was estimated to have emerged in c. 1985 and subsequently acquired different ESBL gene variants (blaCTX-M-14 vs blaCTX-M-15). An ISEcp1-mediated transposition of the blaCTX-M-15 gene further increased the diversity within Clade C. We discovered a local clonal expansion of a rare C2 lineage (C2_8) with a chromosomal insertion of blaCTX-M-15 at the mppA gene. This was acquired from an IncFIA plasmid. The C2_8 lineage clonally expanded in the Irish LTCF from 2006, displacing the existing C1 strain (C1_10), highlighting the potential for novel ESBL-producing ST131 with a distinct genetic profile to cause outbreaks strongly associated with specific healthcare environments.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Análise de Sequência de DNA/métodos , beta-Lactamases/genética , Surtos de Doenças , Escherichia coli/genética , Evolução Molecular , Humanos , Irlanda , Assistência de Longa Duração , Epidemiologia Molecular , Mutagênese Insercional , Filogenia , Plasmídeos/genética , beta-Lactamases/metabolismo
14.
Clin Infect Dis ; 70(2): 219-226, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30840764

RESUMO

BACKGROUND: Klebsiella pneumoniae is a human, animal, and environmental commensal and a leading cause of nosocomial infections, which are often caused by multiresistant strains. We evaluate putative sources of K. pneumoniae that are carried by and infect hospital patients. METHODS: We conducted a 6-month survey on 2 hematology wards at Addenbrooke's Hospital, Cambridge, United Kingdom, in 2015 to isolate K. pneumoniae from stool, blood, and the environment. We conducted cross-sectional surveys of K. pneumoniae from 29 livestock farms, 97 meat products, the hospital sewer, and 20 municipal wastewater treatment plants in the East of England between 2014 and 2015. Isolates were sequenced and their genomes compared. RESULTS: Klebsiella pneumoniae was isolated from stool of 17/149 (11%) patients and 18/922 swabs of their environment, together with 1 bloodstream infection during the study and 4 others over a 24-month period. Each patient carried 1 or more lineages that was unique to them, but 2 broad environmental contamination events and patient-environment transmission were identified. Klebsiella pneumoniae was isolated from cattle, poultry, hospital sewage, and 12/20 wastewater treatment plants. There was low genetic relatedness between isolates from patients/their hospital environment vs isolates from elsewhere. Identical genes encoding cephalosporin resistance were carried by isolates from humans/environment and elsewhere but were carried on different plasmids. CONCLUSION: We identified no patient-to-patient transmission and no evidence for livestock as a source of K. pneumoniae infecting humans. However, our findings reaffirm the importance of the hospital environment as a source of K. pneumoniae associated with serious human infection.


Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Saúde Única , Animais , Antibacterianos/uso terapêutico , Bovinos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Estudos Transversais , Inglaterra/epidemiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Reino Unido , beta-Lactamases
15.
Front Microbiol ; 10: 1592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354680

RESUMO

Whole-genome sequencing (WGS) of methicillin-resistant Staphylococcus aureus (MRSA) has been sparse in low- and middle-income countries, therefore, its population structure is unknown for many regions. We conducted a pilot surveillance of MRSA in the maternity ward of a teaching hospital in Armenia, to characterize the genotypes of circulating MRSA clones. In total, 10 MRSA isolates from a hospital environment (n = 4) and patients (n = 6) were recovered between March and May 2015 and April and May 2016, respectively. WGS analysis showed that the isolates belonged to two clonal complexes (CCs): CC8 (n = 8) and CC30 (n = 2). MRSA CC30 isolates carried staphylococcal cassette chromosome mec (SCCmec) type IVa, whereas MRSA CC8 revealed a type-VT-related SCCmec, which contained a CRISPR/Cas array and showed a high similarity to SCCmec found in coagulase-negative staphylococci. All but one MRSA CC8 isolates carried a plasmid identical to the pSK67 and four also carried a pathogenicity island similar to SaPI5. Phylogenetic analysis showed that the MRSA CC8 isolates formed a monophyletic cluster, which emerged around 1995 and was distinct from representatives of globally-distributed MRSA CC8 lineages. WGS characterization of MRSA in countries with no previous S. aureus genomic surveillance can therefore reveal an unrecognized diversity of MRSA lineages.

16.
Nat Microbiol ; 4(10): 1680-1691, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31235959

RESUMO

Antibiotic resistance in bacterial pathogens threatens the future of modern medicine. One such resistant pathogen is methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to nearly all ß-lactam antibiotics, limiting treatment options. Here, we show that a significant proportion of MRSA isolates from different lineages, including the epidemic USA300 lineage, are susceptible to penicillins when used in combination with ß-lactamase inhibitors such as clavulanic acid. Susceptibility is mediated by a combination of two different mutations in the mecA promoter region that lowers mecA-encoded penicillin-binding protein 2a (PBP2a) expression, and in the majority of isolates by either one of two substitutions in PBP2a (E246G or M122I) that increase the affinity of PBP2a for penicillin in the presence of clavulanic acid. Treatment of S. aureus infections in wax moth and mouse models shows that penicillin/ß-lactamase inhibitor susceptibility can be exploited as an effective therapeutic choice for 'susceptible' MRSA infection. Finally, we show that isolates with the PBP2a E246G substitution have a growth advantage in the presence of penicillin but the absence of clavulanic acid, which suggests that penicillin/ß-lactamase susceptibility is an example of collateral sensitivity (resistance to one antibiotic increases sensitivity to another). Our findings suggest that widely available and currently disregarded antibiotics could be effective in a significant proportion of MRSA infections.


Assuntos
Proteínas de Bactérias/genética , Ácido Clavulânico/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Penicilinas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Substituição de Aminoácidos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Ácido Clavulânico/uso terapêutico , Quimioterapia Combinada , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Testes de Sensibilidade Microbiana , Mariposas , Mutação , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/metabolismo , Penicilinas/uso terapêutico , Regiões Promotoras Genéticas , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/uso terapêutico
17.
J Antimicrob Chemother ; 74(3): 561-570, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629197

RESUMO

OBJECTIVES: To investigate the risk of colonization with ESBL-producing Escherichia coli (ESBL-Ec) in humans in Vietnam associated with non-intensive chicken farming. METHODS: Faecal samples from 204 randomly selected farmers and their chickens, and from 306 age- and sex-matched community-based individuals who did not raise poultry were collected. Antimicrobial usage in chickens and humans was assessed by medicine cabinet surveys. WGS was employed to obtain a high-resolution genomic comparison between ESBL-Ec isolated from humans and chickens. RESULTS: The adjusted prevalence of ESBL-Ec colonization was 20.0% (95% CI 10.8%-29.1%) and 35.2% (95% CI 30.4%-40.1%) in chicken farms and humans in Vietnam, respectively. Colonization with ESBL-Ec in humans was associated with antimicrobial usage (OR = 2.52, 95% CI = 1.08-5.87) but not with involvement in chicken farming. blaCTX-M-55 was the most common ESBL-encoding gene in strains isolated from chickens (74.4%) compared with blaCTX-M-27 in human strains (47.0%). In 3 of 204 (1.5%) of the farms, identical ESBL genes were detected in ESBL-Ec isolated from farmers and their chickens. Genomic similarity indicating recent sharing of ESBL-Ec between chickens and farmers was found in only one of these farms. CONCLUSIONS: The integration of epidemiological and genomic data in this study has demonstrated a limited contribution of non-intensive chicken farming to ESBL-Ec colonization in humans in Vietnam and further emphasizes the importance of reducing antimicrobial usage in both human and animal host reservoirs.


Assuntos
Portador Sadio/microbiologia , Galinhas/microbiologia , Infecções por Escherichia coli/transmissão , Escherichia coli/classificação , Fezes/microbiologia , Zoonoses/transmissão , beta-Lactamases/metabolismo , Adulto , Criação de Animais Domésticos , Animais , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Feminino , Genoma Bacteriano , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Prevalência , Medição de Risco , Vietnã/epidemiologia , Sequenciamento Completo do Genoma , Zoonoses/microbiologia
18.
mBio ; 10(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670621

RESUMO

Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum ß-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species on different farms. Screening all 1,948 isolates for accessory genes encoding antibiotic resistance revealed 41 different genes present in variable proportions in human and livestock isolates. Overall, we identified a low prevalence of shared antimicrobial resistance genes between livestock and humans based on analysis of mobile genetic elements and long-read sequencing. We conclude that within the confines of our sampling framework, there was limited evidence that antimicrobial-resistant pathogens associated with serious human infection had originated from livestock in our region.IMPORTANCE The increasing prevalence of E. coli bloodstream infections is a serious public health problem. We used genomic epidemiology in a One Health study conducted in the East of England to examine putative sources of E. coli associated with serious human disease. E. coli from 1,517 patients with bloodstream infections were compared with 431 isolates from livestock farms and meat. Livestock-associated and bloodstream isolates were genetically distinct populations based on core genome and accessory genome analyses. Identical antimicrobial resistance genes were found in livestock and human isolates, but there was limited overlap in the mobile elements carrying these genes. Within the limitations of sampling, our findings do not support the idea that E. coli causing invasive disease or their resistance genes are commonly acquired from livestock in our region.


Assuntos
Monitoramento Epidemiológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Variação Genética , Sequências Repetitivas Dispersas , Saúde Única , Animais , Biologia Computacional , Estudos Transversais , Farmacorresistência Bacteriana , Inglaterra/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genes Bacterianos , Genômica , Humanos , Gado , Carne/microbiologia , Prevalência , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
19.
PLoS One ; 14(1): e0208356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30641545

RESUMO

Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors under evaluation as vaccine antigens. Clinical S. aureus isolates have the biosynthetic capability to express either CP5 or CP8 and an understanding of the relationship between CP genotype/phenotype and S. aureus epidemiology is valuable. Using whole genome sequencing, the clonal relatedness and CP genotype were evaluated for disease-associated S. aureus isolates selected from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T) to represent different geographic regions in the United States (US) during 2004 and 2009-10. Thirteen prominent clonal complexes (CC) were identified, with CC5, 8, 30 and 45 representing >80% of disease isolates. CC5 and CC8 isolates were CP type 5 and, CC30 and CC45 isolates were CP type 8. Representative isolates from prevalent CC were susceptible to in vitro opsonophagocytic killing elicited by anti-CP antibodies, demonstrating that susceptibility to opsonic killing is not linked to the genetic lineage. However, as not all S. aureus isolates may express CP, isolates representing the diversity of disease isolates were assessed for CP production. While approximately 35% of isolates (primarily CC8) did not express CP in vitro, CP expression could be clearly demonstrated in vivo for 77% of a subset of these isolates (n = 20) despite the presence of mutations within the capsule operon. CP expression in vivo was also confirmed indirectly by measuring an increase in CP specific antibodies in mice infected with CP5 or CP8 isolates. Detection of antigen expression in vivo in relevant disease states is important to support the inclusion of these antigens in vaccines. Our findings confirm the validity of CP as vaccine targets and the potential of CP-based vaccines to contribute to S. aureus disease prevention.


Assuntos
Cápsulas Bacterianas/metabolismo , Epidemiologia Molecular , Polissacarídeos Bacterianos/metabolismo , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Animais , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Cápsulas Bacterianas/genética , Vias Biossintéticas/genética , Modelos Animais de Doenças , Feminino , Humanos , Mutação INDEL/genética , Soros Imunes/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Óperon/genética , Proteínas Opsonizantes/metabolismo , Fagocitose , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos Bacterianos/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Estados Unidos/epidemiologia
20.
Euro Surveill ; 24(4)2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30696529

RESUMO

BackgroundMandatory reporting of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) has occurred in England for over 15years. Epidemiological information is recorded, but routine collection of isolates for characterisation has not been routinely undertaken. Ongoing developments in whole-genome sequencing (WGS) have demonstrated its value in outbreak investigations and for determining the spread of antimicrobial resistance and bacterial population structure. Benefits of adding genomics to routine epidemiological MRSA surveillance are unknown.AimTo determine feasibility and potential utility of adding genomics to epidemiological surveillance of MRSA.MethodsWe conducted an epidemiological and genomic survey of MRSA BSI in England over a 1-year period (1 October 2012--30 September 2013).ResultsDuring the study period, 903 cases of MRSA BSI were reported; 425 isolates were available for sequencing of which, 276 (65%) were clonal complex (CC) 22. Addition of 64 MRSA genomes from published outbreak investigations showed that the study genomes could provide context for outbreak isolates and supported cluster identification. Comparison to other MRSA genome collections demonstrated variation in clonal diversity achieved through different sampling strategies and identified potentially high-risk clones e.g. USA300 and local expansion of CC5 MRSA in South West England.ConclusionsWe demonstrate the potential utility of combined epidemiological and genomic MRSA BSI surveillance to determine the national population structure of MRSA, contextualise previous MRSA outbreaks, and detect potentially high-risk lineages. These findings support the integration of epidemiological and genomic surveillance for MRSA BSI as a step towards a comprehensive surveillance programme in England.


Assuntos
Bacteriemia/microbiologia , Surtos de Doenças/prevenção & controle , Staphylococcus aureus Resistente à Meticilina/genética , Vigilância em Saúde Pública , Infecções Estafilocócicas/diagnóstico , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriemia/diagnóstico , Bacteriemia/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Inglaterra/epidemiologia , Monitoramento Epidemiológico , Estudos de Viabilidade , Feminino , Genoma Bacteriano , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , Estudos Prospectivos , Saúde Pública , Análise de Sequência de DNA , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...