Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4350, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388740

RESUMO

Our research focuses on examining the problem of localizing user equipment (UE) in the uplink scenario using reconfigurable intelligent surfaces (RIS) based lens. We carry out a thorough analysis of the Fisher information matrix (FIM) and assess the influence of various RIS-based lens configurations using an actual RIS phase-dependent amplitude variations model. Furthermore, to reduce the complexity of the maximum likelihood (ML) estimator, a simple localization algorithm-based angular expansion is presented. Simulation results show superior localization performance when prior location information is available for directional and positional channel configurations. The position error bound (PEB) and the root mean square error (RMSE) are studied to evaluate the localization accuracy of the user utilizing the realistic RIS phase-dependent amplitude model in the near-field region. Furthermore, the achievable data rate is obtained in the same region using the realistic RIS phase-dependent amplitude model. It is noticed that adopting the actual RIS phase-dependent amplitude model under the near-field channel increases the localization error and degrades the data rate performance for amplitude value less than one so, the unity assumption of the RIS phase shift model used widely in the literature is inaccurate.

2.
Sci Rep ; 13(1): 11869, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481647

RESUMO

It is proven that the scattering, reflection, and refraction properties of electromagnetic signals can be adapted and managed by using reconfigurable intelligent surfaces (RISs). In this paper, we have investigated the performance of a single-input-single-output (SISO) wideband system in terms of achievable data rate by optimizing the phases of RIS elements and performing a fair power allocation for each subcarrier over the entire bandwidth. A new beamforming codebook is developed from which the maximizing signal-to-noise (SNR) configuration is selected. The channel state information (CSI) along with the selected maximizing SNR configuration is then used by the proposed power algorithm to obtain the optimal configuration of the RIS. To validate our proposed method, it is compared with state-of-the-art semidefinite relaxation (SDR) scheme in terms of performance, complexity and run-time consumption. Our method shows dramatically lower computational complexity than the SDR method and achieves an order of 2.5 increase in the achievable data rate with an optimized RIS compared with an un-configured surface.

3.
Comput Intell Neurosci ; 2023: 8585839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909970

RESUMO

Describing the processes leading to deforestation is essential for the development and implementation of the forest policies. In this work, two different learning models were developed in order to identify the best possible model for the assessment of the deforestation causes and trends. We developed autoregressive integrated moving average (ARIMA) model and long short-term memory (LSTM) independently in order to see the trend between tree cover loss and carbon dioxide emission. This study includes the twenty-year data of Pakistan on tree cover loss and carbon emission from the Global Forest Watch (GFW) platform, a known platform to get numerical data. Minimum mean absolute error (MAE) for the prediction of tree cover loss and carbon emission obtained through ARIMA model is 0.89 and 0.95, respectively. The minimum MAE given by LSTM model is 0.33 and 0.43, respectively. There is no such kind of study conducted in order to identify the increase in carbon emission due to tree cover loss most specifically in Pakistan. The results endorsed that one of the main causes of increase in the pollution in the environment in terms of carbon emission is due to tree cover loss.


Assuntos
Árvores , Paquistão , Previsões
4.
Sensors (Basel) ; 21(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498805

RESUMO

The increasing popularity of using wireless devices to handle routine tasks has increased the demand for incorporating multiple-input-multiple-output (MIMO) technology to utilize limited bandwidth efficiently. The presence of comparatively large space at the base station (BS) makes it straightforward to exploit the MIMO technology's useful properties. From a mobile handset point of view, and limited space at the mobile handset, complex procedures are required to increase the number of active antenna elements. In this paper, to address such type of issues, a four-element MIMO dual band, dual diversity, dipole antenna has been proposed for 5G-enabled handsets. The proposed antenna design relies on space diversity as well as pattern diversity to provide an acceptable MIMO performance. The proposed dipole antenna simultaneously operates at 3.6 and 4.7 sub-6 GHz bands. The usefulness of the proposed 4×4 MIMO dipole antenna has been verified by comparing the simulated and measured results using a fabricated version of the proposed antenna. A specific absorption rate (SAR) analysis has been carried out using CST Voxel (a heterogeneous biological human head) model, which shows maximum SAR value for 10 g of head tissue is well below the permitted value of 2.0 W/kg. The total efficiency of each antenna element in this structure is -2.88, -3.12, -1.92 and -2.45 dB at 3.6 GHz, while at 4.7 GHz are -1.61, -2.19, -1.72 and -1.18 dB respectively. The isolation, envelope correlation coefficient (ECC) between the adjacent ports and the loss in capacity is below the standard margin, making the structure appropriate for MIMO applications. The effect of handgrip and the housing box on the total antenna efficiency is analyzed, and only 5% variation is observed, which results from careful placement of antenna elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA