Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687571

RESUMO

Ipomoea biflora L., commonly known as morning glory, is an herbaceous vine plant in the Convolvulaceae family and is widespread at low elevations in Taiwan and other East Asian countries. In September 2023, six I. biflora plants exhibiting small leaves, leaf yellowing, and shoot proliferation were observed in a vacant lot in Taiwan Agricultural Research Institute (TARI), Wufeng District, Taichung, Taiwan, representing 100% disease incidence in the area. All the symptomatic morning glory climbed onto Murraya paniculata L. (common jasmine orange) which however showed no similar symptoms. The total DNA (two samples for each plant) from leaf tissues of three symptomatic morning glory plants, two asymptomatic morning glory plants, and one asymptomatic common jasmine orange was isolated by the CTAB method (Fulton et al. 1995) and used for PCR with the universal primers, P1 (Deng and Hiruki 1991)/P7 (Schneider et al. 1995), to amplify a fragment containing partial 16S rDNA. Expected 1.8-kb bands were amplified from DNA extracted from all symptomatic plants, whereas no PCR product was detected from that of the asymptomatic I.biflora and M. paniculata plants. Six PCR products were cloned and sequenced in the Biotechnology Center DNA-sequencing facility at National Chung Hsing University, and one representative sequence was selected and deposited in GenBank. BLAST analysis revealed that the obtained 16S rDNA sequence (PP230905) shared 99.92% identity with the following phytoplasma strains: rapeseed phyllody phytoplasma (CP055264), plumbago auriculata leaf yellowing phytoplasma (MN239503), and aster yellows phytoplasma (MK992774), which all belong to the 16SrI subgroup. The query 16S rDNA sequence shares 99.84% identity with that of the 'Candidatus Phytoplasma asteris' reference strain (M30790), suggesting that the phytoplasma is a 'Ca. Phytoplasma asteris'-related strain. A virtual restriction fragment length polymorphism (RFLP) analysis was conducted using iPhyClassifier tool (Zhao et al. 2009), and the pattern derived from the 16S rDNA fragment of the I. biflora phytoplasma was identical (similarity coefficient 1.00) to the reference pattern of 16SrI, subgroup B (onion yellows phytoplasma OY-M; AP006628). Six total DNA samples from symptomatic plants were used as templates to amplify 842 bp secA sequences with SecAfor1 and SecArev3 primers (Hodgetts et al. 2008), and one representative sequence was deposited in GenBank. The partial secA sequence (PP263636) showed 98.22% identity with that of Trema levigatum witches'-broom phytoplasma (MW032212) that also belongs to the 16SrI group (Wan et al. 2021). Phylogenetic analysis of both 16S rDNA and secA confirmed I. biflora phytoplasma as 16SrI, subgroup B. Taken together, we concluded that the morning glory phytoplasma in this study was a 'Ca. Phytoplasma asteris'-related strain belonging to the 16SrI group. To the best of our knowledge, this is the first report of a phytoplasma-infected I. biflora in Taiwan, suggesting morning glory as a new natural host of 16SrI phytoplasmas, alongside other plants like roselle and citrus (Tseng et al. 2014; Feng et al. 2015).

2.
Plant Dis ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319623

RESUMO

Chrysanthemum morifolium (Asteraceae) is commonly grown as commercial cut flowers or pot mums worldwide. Common diseases of chrysanthemum include bacterial blight, fungal diseases, viruses, and phytoplasmas (Verma et al. 2003; Taloh et al. 2020). In June 2022, C. morifolium plants showing virescence, stunting, witches' broom, and phyllody symptoms were observed in 10 plants representing 10% of the estimated 100 plants in a field in Taichung City, Taiwan (Fig. S1). Three symptomatic samples along with three asymptomatic ones were collected for further study. Nested PCR was performed with two primer sets, P1/P7 (Deng and Hiruki 1991; Schneider et al. 1995) and R16F2n/R16R2 (Gundersen and Lee 1996) to amplify nearly full-length of 16S rDNA from the collected samples. The target 1.2-kb DNA band was only amplified from the symptomatic chrysanthemum plants. The amplicons were sequenced and a representative sequence deposited in GenBank under accession number OR501416. This sequence was used to search GenBank database by the Basic Local Alignment Search Tool (BLAST) program through the web service of National Center for Biotechnology Information (NCBI). In the 16S rDNA analyses, the three randomly picked amplicons from chrysanthemum phyllody phytoplasma (CPP) shared 100% identity with one another, and all shared 99.5% identity with the, 'Candidatus Phytoplasma australasiae' reference phytoplasma strain (Y10097). Further analysis using iPhyClassifier (Wei et al. 2007) revealed that CPP was most similar to the pattern of the peanut witches' broom phytoplasma in the 16SrII-A subgroup (GenBank Acc. No. L33765), with a pattern similarity coefficient of 1.0. For confirmation, the secY gene was amplified by secY-F/R primers (Li et al. 2014), the 1.2-kb band was sequenced and deposit in GenBank (Acc. No. OR508986). BLAST analysis showed that the secY sequence of CPP shared 99.93% of sequence identities to several 'Ca. P. australasiaticum' strains (MN543069, CP097312, CP120449, KC953013, MW085916, MW070030, CP040925). The phylogenetic tree analysis based on the secY gene by MEGA11 employing maximum-likelihood algorithm was performed and the bootstrap value was set as 1000 times for support of the stability for the clades. The result showed that CPP is closely related to other strains in 16SrII group (Fig. S2). Taken together, CPP is a 'Ca. P. australasiaticum' related-strain in 16SrII-A subgroup. This is the first report of chrysanthemum as a host of this phytoplasma in Taiwan, and might have an impact to the horticultural industry and the growers.

3.
Front Plant Sci ; 14: 1092998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332697

RESUMO

Introduction: Begomoviruses are mainly transmitted by whiteflies. However, a few begomoviruses can be transmitted mechanically. Mechanical transmissibility affects begomoviral distribution in the field. Materials and methods: In this study, two mechanically transmissible begomoviruses, tomato leaf curl New Delhi virus-oriental melon isolate (ToLCNDV-OM) and tomato yellow leaf curl Thailand virus (TYLCTHV), and two nonmechanically transmissible begomoviruses, ToLCNDV-cucumber isolate (ToLCNDV-CB) and tomato leaf curl Taiwan virus (ToLCTV), were used to study the effects of virus-virus interactions on mechanical transmissibility. Results: Nicotiana benthamiana and host plants were coinoculated through mechanical transmission with inoculants derived from plants that were mix-infected or inoculants derived from individually infected plants, and the inoculants were mixed immediately before inoculation. Our results showed that ToLCNDV-CB was mechanically transmitted with ToLCNDV-OM to N. benthamiana, cucumber, and oriental melon, whereas ToLCTV was mechanically transmitted with TYLCTHV to N. benthamiana and tomato. For crossing host range inoculation, ToLCNDV-CB was mechanically transmitted with TYLCTHV to N. benthamiana and its nonhost tomato, while ToLCTV with ToLCNDV-OM was transmitted to N. benthamiana and its nonhost oriental melon. For sequential inoculation, ToLCNDV-CB and ToLCTV were mechanically transmitted to N. benthamiana plants that were either preinfected with ToLCNDV-OM or TYLCTHV. The results of fluorescence resonance energy transfer analyses showed that the nuclear shuttle protein of ToLCNDV-CB (CBNSP) and the coat protein of ToLCTV (TWCP) localized alone to the nucleus. When coexpressed with movement proteins of ToLCNDV-OM or TYLCTHV, CBNSP and TWCP relocalized to both the nucleus and the cellular periphery and interacted with movement proteins. Discussion: Our findings indicated that virus-virus interactions in mixed infection circumstances could complement the mechanical transmissibility of nonmechanically transmissible begomoviruses and alter their host range. These findings provide new insight into complex virus-virus interactions and will help us to understand the begomoviral distribution and to reevaluate disease management strategies in the field.

4.
Plant Dis ; 107(10): 3051-3056, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36890125

RESUMO

Xylella taiwanensis (Xt) is a nutritionally fastidious bacterial pathogen causing pear leaf scorch disease (PLSD) in Taiwan. The disease causes early defoliation, loss of tree vigor, and reduction in fruit yield and quality. No cure for PLSD is available. The only option for growers to control the disease is to use pathogen-free propagation material, which requires early and accurate detection of Xt. Currently, only one simplex PCR method is available for the diagnosis of PLSD. We developed five Xt-specific TaqMan quantitative PCR (TaqMan qPCR) systems (primers-probe sets) for the detection of Xt. The PCR systems target three conserved genomic loci commonly used in bacterial pathogen detection: the 16S rRNA gene (rrs), the 16S-23S rRNA intergenic transcribed sequence (16S-23S rRNA ITS), and the DNA gyrase gene (gyrB). BLAST analysis using the GenBank nr sequence database, including whole genome sequences of 88 Xanthomonas campestris pv. campestris (Xcc) strains, 147 X. fastidiosa (Xf) strains, and 32 Xt strains, showed that all primer and probe sequences were specific only to Xt. Single nucleotide polymorphisms (SNPs) provided the primer/probe specificity to Xt. The PCR systems were evaluated by using DNA samples from pure cultures of two Xt strains, one Xf strain, one Xcc strain, and 140 plant samples collected from 23 pear orchards in four counties in Taiwan. The two-copy rrs and 16S-23S rRNA ITS-based PCR systems (Xt803-F/R, Xt731-F/R, and Xt16S-F/R) showed higher detection sensitivity than the two single-copy gyrB-based systems (XtgB1-F/R and XtgB2-F/R). A metagenomic analysis of a representative PLSD leaf sample detected the presence of non-Xt proteobacteria and fungal pathogens that should be taken into consideration in PLSD, as they might interfere with diagnosis.


Assuntos
RNA Ribossômico 23S , Taiwan , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase/métodos
5.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723960

RESUMO

Stachytarpheta jamaicensis (L.) Vahl, also known as snack weed, is an exotic plant in Taiwan. In April 2021, severe golden yellow mosaic leaves (Fig. S1) were observed on S. jamaicensis plants in Taichung City, Taiwan. Samples from eight symptomatic and two asymptomatic plants were collected from the public flowerbed. Total DNA was extracted from each of the collected samples by using a modified CTAB method (Echevarría-Machado et al. 2005). PCR with Begomovirus degenerate primers (PAL1v1978/PAR1c715; Rojas et al. 1993) was conducted. The expected 1.5-kb fragment was amplified only from the 8 symptomatic samples. Two randomly selected amplicons were cloned on pCRII-TOPO TA vector (Invitrogen Co., San Diego, CA, USA) and sequenced with the ABI3730 automatic sequencer (Applied Biosystems, Hammonton, NJ, USA) at National Chung Hsing University (NCHU). After NCBI BLASTn analysis, the sequences were shown to be most closely related to tomato leaf curl Cebu virus (ToLCCeV) isolates (EU487042, EU487025, KU946997), with 92.4-92.5% nucleotide sequence identity by using the CLUSTAL W method of MegAlign program (DNASTAR, Inc., Madison, WI, USA). A ToLCCeV specific primer pair (FJJ2021-165 /166 5'-ACTTACAGGCCCATGTATCG-3' / 5'-GAATGGGTATCCGAGCACG-3') was designed to amplify and sequence the remaining half of viral DNA. The expected 1.6-kb amplicon was amplified only from the symptomatic samples. The full-length of DNA-A consisted of 2.7-kb nucleotides (ToLCCeV isolate stachy, ON525110 and ON525111) and contained six open reading frames (two in viral sense, V1 to V2 and four in the viral complementary sense, C1 to C4) and the conserved nonanucleotide motif (TAATATTAC). The full-length DNA-A of ToLCCeV stachy isolates shared 99.9% nucleotide identity to each other and 91.2-92.4% and 91.3-92.5% nucleotide identities to other ToLCCeV isolates (EU487042, EU487025, KU946997) available in NCBI GenBank. Besides, ToLCCeV is a monopartite begomovirus that harbors no DNA-B. Thus, there were no bands amplified from the degenerate primer pair for DNA-B (DNABLC2 / DNABLV2; Green et al. 2001). Furthermore, the infectious clone was constructed by using phi29 DNA polymerase (New England Biolabs, Ipswich, MA, USA) for rolling circle amplification (RCA). The RCA product was partially digested with ApaI (NEB) and ligated into the binary vector pCambia0380 (AF234290). The resulting recombinant vector was transformed into Agrobacterium tumefaciens C58. A. tumefaciens C58, containing the infectious ToLCCeV-Stachy DNA-A vector, was grown overnight in LB broth containing kanamycine (50 µg/ml) at 28°C. S. jamaicensis and Nicotiana benthamiana (Nb, four to six leaf stage) plants were agroinoculated to confirm the infectivity of the ToLCCeV clone. The leaf curling and blister symptoms were observed on the Nb systemic leaves 17-day post inoculation (dpi) and the golden yellow mosaic symptom noticed on S. jamaicensis systemic leaves 30-dpi. The presence of the viral DNA in the inoculated plants was confirmed by PCR using the specific primer pair of ToLCCeV. To the best of our knowledge, this is the first report of the monopartite begomovirus, ToLCCeV, associated with golden yellow mosaic disease in S. jamaicensis in Taiwan. The existence of ToLCCeV might severely impact the tomato and pepper industry because they are the natural hosts of ToLCCeV (Tsai et al. 2011) and ToLCCeV may be transmitted by the whitefly, Bemisia tabaci, in Taiwan (Ko et al. 2005).

6.
Plant Dis ; 107(7): 2002-2008, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36480735

RESUMO

Understanding the seedborne nature of plant viruses is essential for developing disease control strategies and is impactful to the seed market. Here, we investigated seed transmissibility of tomato leaf curl New Delhi virus-cucumber isolate (ToLCNDV-CB) and -oriental melon isolate (ToLCNDV-OM) in cucumber and seed transmissibility of tomato leaf curl Taiwan virus (ToLCTV) and tomato yellow leaf curl Thailand virus (TYLCTHV) in tomato. Parent plants were inoculated using agroinfiltration with virus infectious clones, and virus infection was confirmed by PCR with virus-specific primers. ToLCNDV-CB and ToLCNDV-OM were detected in different parts of the female and male flowers and the fruits of cucumbers. ToLCNDV-CB and ToLCNDV-OM were also detected in cucumber seed coats and seedlings with an infection rate higher than 79%. Similar results were observed with ToLCTV and TYLCTHV as they were detected in different parts of the female and male flowers and fruits of three tomato cultivars. ToLCTV and TYLCTHV were also detected in tomato seed coats and seedlings with an infection rate higher than 36%. In addition, pollen-mediated transmission assays of these four begomoviruses were conducted with pollen derived from virus-infected plants to healthy plants. Results showed that ToLCNDV-CB and ToLCNDV-OM were detected in cross-pollinated cucumber progenies with an infection rate higher than 70%. ToLCTV and TYLCTHV were also detected in cross-pollinated tomato progenies with an infection rate higher than 77%. Our results indicated that ToLCNDV, ToLCTV, and TYLCTHV can be transmitted via seeds or pollens of cucumber and tomato plants. To our knowledge, this is the first report documenting the pollen-mediated transmission of begomoviruses.


Assuntos
Begomovirus , Cucumis sativus , Solanum lycopersicum , Begomovirus/genética , Taiwan , Sementes , Pólen
7.
Front Plant Sci ; 13: 1051348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531380

RESUMO

Phalaenopsis orchids are one of the most important exporting commodities for Taiwan. Most orchids are planted and grown in greenhouses. Early detection of orchid diseases is crucially valuable to orchid farmers during orchid cultivation. At present, orchid viral diseases are generally identified with manual observation and the judgment of the grower's experience. The most commonly used assays for virus identification are nucleic acid amplification and serology. However, it is neither time nor cost efficient. Therefore, this study aimed to create a system for automatically identifying the common viral diseases in orchids using the orchid image. Our methods include the following steps: the image preprocessing by color space transformation and gamma correction, detection of leaves by a U-net model, removal of non-leaf fragment areas by connected component labeling, feature acquisition of leaf texture, and disease identification by the two-stage model with the integration of a random forest model and an inception network (deep learning) model. Thereby, the proposed system achieved the excellent accuracy of 0.9707 and 0.9180 for the image segmentation of orchid leaves and disease identification, respectively. Furthermore, this system outperformed the naked-eye identification for the easily misidentified categories [cymbidium mosaic virus (CymMV) and odontoglossum ringspot virus (ORSV)] with the accuracy of 0.842 using two-stage model and 0.667 by naked-eye identification. This system would benefit the orchid disease recognition for Phalaenopsis cultivation.

8.
Plant Dis ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480732

RESUMO

Stachytarpheta jamaicensis, a traditional herbal pharmacological plant in the Family Verbenaceae that produces purplish-blue flowers, is mainly used as a garden plant in tropical and subtropical areas, including Taiwan. A begomovirus, stachytarpheta leaf curl virus (StaLCV) that caused disease on S. jamaicensis, has been reported (Xiong et al. 2005). In 2021, five symptomatic plants with mild mottle and leaf distortion (Fig. S1A, B) and three asymptomatic plants were collected in Taichung City, Taiwan. Polymerase chain reaction (PCR) and reverse transcription (RT)-PCR assays using degenerate primer pairs with expected amplicon sizes of 1.2-1.3 kb (PAL1v1978/PAR1c715; Rojas et al. 1993), 312 bp (dTospo-F2/dTospo-R2; Huang et al. 2018), and 600-750 kb (Hrp5/Pot1; Chen et al. 2006, Colinet and Kummert 1993) for Begomovirus, Orthotospovirus, and Potyvirus, respectively were performed using total DNA and total RNA plant extracts. Results showed the expected fragments were only amplified from the 5 symptomatic plants using Potyvirus degenerate primers. Three out of five randomly picked amplicons, coding the 3'-end of nuclear inclusion b protein (NIb) and 5'-end coat protein (CP) genes, were cloned and sequenced with the ABI3730 automatic sequencer (Applied Biosystems, Hammonton, NJ, USA) in Biotechnology Centre DNA-sequencing facility at National Chung Hsing University (NCHU). After NCBI BLASTN analysis, the sequences were shown to be most closely related to bidens mottle virus (BiMoV). The nucleotide sequence identities analyzed using the CLUSTAL W Methods of MegAlign program (DNASTAR, Inc., Madison, WI, USA), showed the three amplicons shared 95.8-99.8% to each other and 94.3-97.1% with 18 BiMoV isolates available in NCBI GenBank. Further RT-PCR with a specific primer (FJJ2021-278) designed from the CP of previously amplified amplicons, paired with oligo d(T) primer, were used for amplification of the 3'-CP gene and 3'-untranslated region (UTR) from total RNAs purified from symptomatic plants. The full-length CPs (804-nt and 268-aa) of the BiMoV isolates described here (Acc. Nos. OM406329 and OM406330; designated as isolate Stachy3 and Stachy7, respectively) shared 96.5-98.5% nucleotide and 97.8-99.3% amino acid identity to other BiMoV isolates. The isolate used for back-inoculation to S. jamaicensis was selected after the completion of triple single chlorotic local lesion isolation in Chenopodium quinoa. Two mechanically-inoculated S. jamaicensis plants exhibited symptoms 14-16 days post-inoculation similar to those observed in field plants and tested positive in RT-PCR using BiMoV-specific primers. In transmission electron microscopy, crude sap extracted from mechanically-inoculated C. quinoa and stained with uranyl acetate (UA) revealed flexuous filamentous virions of approximately 720 × 12 nm (Fig. S1C). A western blot assay using BiMoV antiserum (Chen and Lee 2012) revealed bands of about 34 KDa only from the mechanically-inoculated C. quinoa and the five symptomatic S. jamaicensis plants collected from the field. Taken together, we believe this is the first report of BiMoV infecting and causing mild chlorotic mottle and leaf distortion on S. jamaicensis. S. jamaicensis may serve as a new alternative host of BiMoV that can spread the disease, and consequently may directly impact the producers of horticultural or economical crops, such as lettuce, calendula, sunflower, lisianthus, and garland chrysanthemum in Taiwan.

9.
Plant Dis ; 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549325

RESUMO

Murraya exotica L., commonly known as orange jasmine, is an evergreen shrub belonging to the Rutaceae family. It has long been used as traditional Chinese medicine for treating abdominal pain, toothache, scabies, and other disorders (Liu et al. 2018). M. exotica is widely grown as a garden bush in Taiwan. A prokaryotic pathogen, 'Candidatus Liberibacter asiaticus' (Damsteegt et al. 2010), reportedly could infect M. exotica, but there is no reported phytoplasma disease in M. exotica. In June 2020, M. exotica plants exhibiting witches'-broom (WB), leaf yellowing, and small leaves (Fig. s1) were observed in a horticultural landscaping field in Taichung City, Taiwan. It was estimated that more than 70% of M. exotica plants within a single area were affected. DNA was extracted separately from petioles of five symptomatic and one asymptomatic plants using a modified CTAB method (Echevarría-Machado et al. 2005) and used for nested PCR with two universal primers, P1 (Deng and Hiruki 1991)/P7 (Schneider et al. 1995) followed by R16F2n/R16R2 (Gundersen and Lee 1996) to amplify a 1.2-kb 16S rRNA fragment. PCR was also conducted by primers, rp(I)F1A/rp(I)R1A to amplify a partial ribosomal protein S3 and L22 (rplV-rpsC) fragment (Lee et al. 2004). Expected 1.2-kb bands were amplified from DNA extracted from all symptomatic plants, whereas no bands were amplified from that of the asymptomatic plant. The amplicons were cloned, sequenced with an ABI 3730 automatic sequencer (Applied Biosystems, Hammonton, NJ, USA) in Biotechnology Centre DNA-sequencing facility at National Chung Hsing University (NCHU) and deposited in GenBank. BLAST analysis revealed that 16S rDNA sequences (MZ373297 and MZ373298) shared 100% identity to each other and both shared 99.4% identity with those of several phytoplasma strains, e.g., rapeseed phyllody phytoplasma (CP055264), Brassica sp. phyllody phytoplasma (MN877914), Plumbago auriculata leaf yellowing phytoplasma (MN239504), and aster yellows phytoplasma (MK992774), which all belonging to the 16SrI group, by using the CLUSTAL W Methods of MegAlign program (DNASTAR, Inc., Madison, WI, USA). Further analysis using iPhyClassifier tool (https://plantpathology.ba.ars.usda.gov) indicated that the virtual restriction fragment length polymorphism (RFLP) patterns derived from the 16S rDNA F2nR2 fragment of the M. exotica WB phytoplasma was most similar to the reference pattern of the 16SrI-B subgroup, with a pattern similarity coefficient of 0.97 and shared 99.3% sequence identity to 'Candidatus Phytoplasma asteris' (M30790). The partial rplV-rpsC gene sequence (OM275408) showed 99.7% of sequence identities to those of rapeseed phyllody phytoplasma (CP055264), plum witches'-broom phytoplasma (MH061366) and oilseed rape phytoplasma (KX551965), by using the CLUSTAL W Methods of MegAlign program. Taken together, we concluded that the phytoplasma strain associated with M. exotica WB disease was a strain belonging to a 16SrI. To the best of our knowledge, this is the first report of M. exotica being infected by a phytoplasma in the aster yellows group, and M. exotica may also serve as an intermediate reservoir host to other plants, e.g., wax apple, periwinkle and roselle, of 16SrI phytoplasma.

10.
Mol Plant Pathol ; 23(4): 561-575, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984809

RESUMO

Begomoviruses belonging to the family Geminiviridae are plant-infecting DNA viruses. Begomoviral movement protein (MP) has been reported to be required for virus movement, host range determination, and symptom development. In the present study, the FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans isomerase (NbFKPPIase) of Nicotiana benthamiana was identified by a yeast two-hybrid screening system using the MP of tomato leaf curl New Delhi virus (ToLCNDV) oriental melon (OM) isolate (MPOM ) as bait. Transient silencing of the gene encoding NbFKPPIase increased replication of three test begomoviruses, and transient overexpression decreased viral replication, indicating that NbFKPPIase plays a role in defence against begomoviruses. However, infection of N. benthamiana by ToLCNDV-OM or overexpression of the gene encoding MPOM drastically reduced the expression of the gene encoding NbFKPPIase. Fluorescence resonance energy transfer analysis revealed that MPOM interacted with NbFKPPIase in the periphery of cells. Expression of the gene encoding NbFKPPIase was induced by salicylic acid but not by methyl jasmonate or ethylene. Moreover, the expression of the gene encoding NbFKPPIase was down-regulated in response to 6-benzylaminopurine and up-regulated in response to gibberellin or indole-3-acetic acid, suggesting a role of NbFKPPIase in plant development. Transcriptome analysis and comparison of N. benthamiana transient silencing and overexpression of the gene encoding MPOM led to the identification of several differentially expressed genes whose functions are probably associated with cell cycle regulation. Our results indicate that begomoviruses could suppress NbFKPPIase-mediated defence and biological functions by transcriptional inhibition and physical interaction between MP and NbFKPPIase to facilitate infection.


Assuntos
Begomovirus , Solanum lycopersicum , Begomovirus/genética , Peptidilprolil Isomerase , Doenças das Plantas , Proteínas de Ligação a Tacrolimo , Nicotiana/genética , Replicação Viral
11.
Plant Dis ; 105(10): 2867-2872, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33851864

RESUMO

A number of viruses and viroids infect solanaceous plants causing severe yield losses. Several seed-borne viroids are listed as quarantine pathogens in many countries. Among them, columnea latent viroid, pepper chat fruit viroid, potato spindle tuber viroid, tomato apical stunt viroid, tomato chlorotic dwarf viroid, and tomato planta macho viroid are of major concerns. The objective of this study was to design and test universal primers that could be used to detect six viroids in solanaceous plants using one-step reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Results revealed that a pair of degenerate primers could be used in a one-step RT-PCR to amplify six pospiviroids from Solanaceae seeds and plants. Moreover, five primers were designed and used in RT-LAMP to amplify six pospiviroids. The minimal concentration of viroid RNA required for a successful detection varied, ranging from 1 fg to 10 ng, depending on the species of viroid and detection method. In general, RT-LAMP was more sensitive than RT-PCR, but both assays were rapid and highly sensitive tools to detect six pospiviroids. Detection methods in use for these viroids require at least two different sets of primers. The assays developed in this research could facilitate the ability to screen a large number of solanaceous plants and seeds intended for import and export.


Assuntos
Vírus de Plantas , Solanaceae/virologia , Viroides , Técnicas de Amplificação de Ácido Nucleico , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase , Transcrição Reversa , Viroides/genética , Viroides/isolamento & purificação
12.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429970

RESUMO

In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 µM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.


Assuntos
Fluorescência , Nanofios/química , Prata/química , Ressonância de Plasmônio de Superfície , Análise Espectral Raman
13.
Plant Dis ; 104(5): 1318-1327, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32181724

RESUMO

A new begomovirus, tentatively named hibiscus yellow vein leaf curl virus (HYVLCV), was identified in Hibiscus rosa-sinensis plants showing symptoms of leaf curl, yellow vein, and vein enation on the undersides of the leaf in Taiwan. Sequence analysis of the full-length HYVLCV genome from the rolling cycle amplicon revealed a genome of 2,740 nucleotides that contains six open reading frames and a conserved sequence (5'-TAATATTAC-3') commonly found in geminiviral genomes. HYVLCV shares the highest nucleotide identity (88.8%) with cotton leaf curl Multan virus (CLCuMuV) genome, which is lower than the criteria (91%) set for species demarcation in the genus Begomovirus. No begomoviral DNA-B was detected; however, a begomovirus-associated DNA betasatellite (DNA-ß) was detected. The DNA-ß (1,355 nucleotides) shares the highest nucleotide identity (78.6%) with malvastrum yellow vein betasatellite (MaYVB). Because the identity is slightly higher than the criteria (78%) set for the species demarcation threshold for a distinct DNA-ß species, the DNA-ß of HYVLCV reported in this study is considered the same species of MaYVB and tentatively named MaYVB-Hib. An expected 1,498-bp fragment was amplified with two HYVLCV-specific primers from 10 of 11 field-collected samples. Four independent amplicons were sequenced, revealing 100% nucleotide identity with the HYVLCV genome. Agroinoculation of a dimer of the infectious monopartite genome alone to Nicotiana benthamiana resulted in mild symptoms at 28 days postinoculation (dpi); coagroinoculation with the DNA-ß satellite resulted in severe symptoms at 12 dpi. HYVLCV could be transmitted to healthy H. rosa-sinensis by grafting, resulting in yellow vein symptoms at 30 dpi.


Assuntos
Begomovirus , Hibiscus , Rosa , Genoma Viral , Filogenia , Doenças das Plantas , Análise de Sequência de DNA , Taiwan
14.
Mol Plant Pathol ; 21(4): 571-588, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078762

RESUMO

Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.


Assuntos
Begomovirus/metabolismo , Begomovirus/patogenicidade , Geminiviridae/metabolismo , Geminiviridae/patogenicidade , Southern Blotting , Cucumis sativus/virologia , Cucurbitaceae/virologia , Hibridização In Situ , Doenças das Plantas/virologia , Nicotiana/virologia
15.
Plant Dis ; 103(7): 1605-1612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30998416

RESUMO

Dendrobium smillieae is one of the popular orchids in Taiwan. This report describes a new potyvirus tentatively named Dendrobium chlorotic mosaic virus (DeCMV) causing chlorotic and mosaic symptoms in D. smillieae. Enzyme-linked immunosorbent assay (ELISA) tests using six antisera against orchid-infecting viruses revealed that only a monoclonal antibody against the potyvirus group reacted positively with crude saps prepared from a symptomatic dendrobium orchid. Potyvirus-like, flexuous, filamentous particles were observed under an electron microscope, measuring approximately 700 to 800 nm in length and 11 to 12 nm in diameter. Sequence analyses revealed that DeCMV coat protein gene shared 59.6 to 66.0% nucleotide sequence identity and 57.6 to 66.0% amino acid sequence identity, whereas the DeCMV complete genome shared 54.1 to 57.3% nucleotide sequence identity and 43.7 to 49.5% amino acid sequence identity with those other known potyviruses. These similarity levels were much lower than the criteria set for species demarcation in potyviruses. Thus, DeCMV can be considered a new potyvirus. The whole DeCMV genome contains 10,041 nucleotides (GenBank accession no. MK241979) and encodes a polyprotein that is predicted to produce 10 proteins by proteolytic cleavage. In a pathogenicity test, results of inoculation assays demonstrated that DeCMV can be transmitted to dendrobium orchids by grafting and mechanical inoculation, as verified by ELISA and western blot analyses using the DeCMV polyclonal antiserum and by reverse transcription polymerase chain reaction using the coat protein gene-specific primers. The inoculated orchids developed similar chlorotic and mosaic symptoms. In conclusion, DeCMV is a novel orchid-infecting potyvirus, and this is the first report of a new potyvirus that infects dendrobium orchids in Taiwan.


Assuntos
Dendrobium , Potyvirus , Sequência de Aminoácidos , Dendrobium/virologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Filogenia , Potyvirus/classificação , Potyvirus/genética , Taiwan
16.
Arch Virol ; 162(7): 2109-2113, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28260140

RESUMO

Pepper chlorotic spot virus (PCSV), newly found in Taiwan, was identified as a new tospovirus based on the molecular characterization of its S RNA. In this study, the complete M and L RNA sequences of PCSV were determined. The M RNA has 4795 nucleotides (nts), encoding the NSm protein of 311 aa (34.5 kDa) in the viral (v) strand and the glycoprotein precursor (Gn/Gc) of 1122 aa (127.6 kDa) in the viral complementary (vc) strand. The L RNA has 8859 nts, encoding the RNA-dependent RNA polymerase (RdRp) of 2873 aa (330.8 kDa) in the vc strand. Analyses of the NSm, Gn/Gc and RdRp of PCSV revealed that PCSV is phylogenetically clustered within the watermelon silver mottle virus-related clade. Based on the whole genome sequence, PCSV is closely related to Tomato necrotic ringspot virus and should be classified as a new tospovirus species.


Assuntos
Piper nigrum/virologia , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Tospovirus/classificação , Sequência de Aminoácidos , Solanum lycopersicum/virologia , Filogenia , Taiwan , Tospovirus/genética , Tospovirus/isolamento & purificação , Proteínas Virais/genética
17.
Biosens Bioelectron ; 63: 572-579, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25168766

RESUMO

Orchids of the genus Phalaenopsis are some of the most economically important plants in Taiwan. Fast, accurate, and on-site detection of pathogens in these orchids is therefore of critical importance in order to prevent or suppress costly disease outbreaks. Traditional pathogen detection methods are time-consuming, require well-equipped laboratories with highly trained personnel, and cannot be conducted in situ. In this study, a microfluidic system integrated with buried optical fibers was developed to detect viral pathogens of Phalaenopsis spp. Briefly, virus-specific ribonucleic acid (RNA) purification was achieved by a pre-treatment incubation with magnetic beads, and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was used subsequently to amplify the viral RNA. Positive RT-LAMP reactions resulted in the precipitation of magnesium pyrophosphate, which caused a change in turbidity that could be seen by the naked eye. A buried optical fiber-based detection module and a micro-stirring device were then integrated into the microfluidic chip to detect the RT-LAMP reaction product directly on the chip itself by measuring the change in the optical signals caused by the turbidity change associated with a positive amplification. The limit of detection for this system was found to be 25 fg, which is of similar sensitivity to existing, more laborious methods. Therefore, by using the integrated microfluidic system, a sensitive, rapid, accurate, and automatic diagnosis of viral pathogens in Phalaenopsis spp. orchids could be achieved within only 65 min.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Orchidaceae/virologia , Tospovirus/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento , RNA Viral/genética , RNA Viral/isolamento & purificação , Integração de Sistemas , Tospovirus/genética
18.
PLoS One ; 8(7): e68749, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874746

RESUMO

A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future.


Assuntos
Cucumis/genética , Cucumis/virologia , Regulação da Expressão Gênica de Plantas , Potyvirus/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA Complementar , Resistência à Doença/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/virologia
19.
Nanomedicine ; 9(8): 1274-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23751373

RESUMO

Early detection of pathogens is crucial for the effective surveillance of diseases. Many efforts have been made to explore methods which can detect these pathogens within a short period of time without requiring a tedious protocol. However, these developed methods have disadvantages such as they are relatively time-consuming or require specialized laboratory facilities. In this work, we have developed an integrated microfluidic system for rapid and automatic detection of viruses by direct analysis from fresh Phalaenopsis orchid leaves. The entire protocol, including ribonucleic acid (RNA) purification, reverse transcription loop-mediated-isothermal-amplification (RT-LAMP) and optical detection by measuring changes in turbidity was performed on a single chip. This is the first time that an integrated microfluidic system for the detection of viruses infecting the Phalaenopsis orchid has been demonstrated. The sensitivity of the developed system was also explored in this study to validate its performance. FROM THE CLINICAL EDITOR: In this study, the authors report the development of an integrated microfluidic system for rapid and automatic detection of viruses by direct analysis of fresh Phalaenopsis orchid leaves, performing the 3-step protocol using a single chip. Similar methods may find clinical application for fast and accurate detection of viral infections.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Orchidaceae/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , RNA Viral/isolamento & purificação , Vírus/isolamento & purificação , Desenho de Equipamento , RNA Viral/genética , Vírus/genética
20.
Transgenic Res ; 21(5): 983-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22203520

RESUMO

Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.


Assuntos
Citrullus/genética , Cucumovirus/patogenicidade , Resistência à Doença , Plantas Geneticamente Modificadas/virologia , Transgenes , Agrobacterium/genética , Agrobacterium/metabolismo , Northern Blotting , Southern Blotting , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Citrullus/imunologia , Citrullus/virologia , Cucumovirus/genética , Cucumovirus/imunologia , Ensaio de Imunoadsorção Enzimática , Genes Virais , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Genoma de Planta , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...