Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932298

RESUMO

An incomplete Freund's adjuvant elicited an overt pathogenesis in vaccinated mice following the intranasal challenge of A/California/07/2009 (H1N1) virus despite the induction of a higher specific antibody titer than other adjuvanted formulations. Aluminum hydroxide adjuvants have not induced any pathogenic signs in a variety of formulations with glycolipids. A glycolipid, α-galactosyl ceramide, improved a stimulatory effect of distinct adjuvanted formulations on an anti-influenza A antibody response. In contrast to α-galactosyl ceramide, its synthetic analogue C34 was antagonistic toward a stimulatory effect of an aluminum hydroxide adjuvant on a specific antibody response. The aluminum hydroxide adjuvant alone could confer complete vaccine-induced protection against mortality as well as morbidity caused by a lethal challenge of the same strain of an influenza A virus. The research results indicated that adjuvants could reshape immune responses either to improve vaccine-induced immunity or to provoke an unexpected pathogenic consequence. On the basis of these observations, this research connotes the prominence to develop a precision adjuvant for innocuous vaccination aimed at generating a protective immunity without aberrant responses.

2.
Biochem Pharmacol ; 215: 115688, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481137

RESUMO

Fucoidans are a class of long chain sulfated polysaccharides and have multiple biological functions. Herein, four natural fucoidans extracted from Fucus vesiculosus, F. serratus, Laminaria japonica and Undaria pinnatifida, were tested for their HCoV-OC43 inhibition and found to demonstrate EC50 values ranging from 0.15 to 0.61 µg/mL. That from U. pinnatifida exhibited the most potent anti-HCoV-OC43 activity with an EC50 value of 0.15 ± 0.02 µg/mL, a potency largely independent of its sulfate content. Comparison of the gene expression profiles of fucoidan-treated and untreated cells infected with HCoV-OC43 revealed that fucoidan treatment effectively diminished HCoV-OC43 gene expressions associated with induced chemokines, cytokines and viral activities. Further studies using a highly fucoidan-resistant HCoV-OC43 determined that fucoidan inhibited HCoV-OC43 infection via interfering with viral entry and led to the identification of the specific site on the N-terminal region of spike protein, that located adjacent to the host cell receptor binding domain, targeted by the virus. Furthermore, in a SARS-CoV-2 pseudovirus neutralization assay, fucoidan also blocked SARS-CoV-2 entry. In vitro and in vivo, fucoidan decreased SARS-CoV-2 viral loads and inhibited viral infection in Calu-3 or Vero E6 cells and SARS-CoV-2 infected hamsters, respectively. Fucoidan was also found to inhibit furin activity, and reported furin inhibitors were found to inhibit viral infection by wild type HCoV-OC43 or SARS-CoV-2. Accordingly, we conclude that fucoidans inhibit coronaviral infection by targeting viral spike protein and host cell furin to interfere with viral entry.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Animais , Cricetinae , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Furina/metabolismo
3.
J Med Virol ; 95(2): e28478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609964

RESUMO

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Assuntos
COVID-19 , Linfopenia , Animais , Camundongos , SARS-CoV-2/metabolismo , Antígeno B7-H1 , Evasão da Resposta Imune , NF-kappa B/metabolismo , Regulação para Cima , Citocinas/metabolismo
4.
Emerg Microbes Infect ; 12(1): 2149353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395071

RESUMO

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Nanopartículas , Animais , Humanos , Camundongos , Anticorpos Antivirais , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas contra COVID-19/imunologia
5.
Eur J Med Chem ; 235: 114295, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344901

RESUMO

Niclosamide, a widely-used anthelmintic drug, inhibits SARS-CoV-2 virus entry through TMEM16F inhibition and replication through autophagy induction, but the relatively high cytotoxicity and poor oral bioavailability limited its application. We synthesized 22 niclosamide analogues of which compound 5 was found to exhibit the best anti-SARS-CoV-2 efficacy (IC50 = 0.057 µ M) and compounds 6, 10, and 11 (IC50 = 0.39, 0.38, and 0.49 µ M, respectively) showed comparable efficacy to niclosamide. On the other hand, compounds 5, 6, 11 contained higher stability in human plasma and liver S9 enzymes assay than niclosamide, which could improve bioavailability and half-life when administered orally. Fluorescence microscopy revealed that compound 5 exhibited better activity in the reduction of phosphatidylserine externalization compared to niclosamide, which was related to TMEM16F inhibition. The AI-predicted protein structure of human TMEM16F protein was applied for molecular docking, revealing that 4'-NO2 of 5 formed hydrogen bonding with Arg809, which was blocked by 2'-Cl in the case of niclosamide.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Niclosamida/farmacologia
6.
Sci Transl Med ; 14(639): eabm0899, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35230146

RESUMO

A major challenge to end the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is to develop a broadly protective vaccine that elicits long-term immunity. As the key immunogen, the viral surface spike (S) protein is frequently mutated, and conserved epitopes are shielded by glycans. Here, we revealed that S protein glycosylation has site-differential effects on viral infectivity. We found that S protein generated by lung epithelial cells has glycoforms associated with increased infectivity. Compared to the fully glycosylated S protein, immunization of S protein with N-glycans trimmed to the mono-GlcNAc-decorated state (SMG) elicited stronger immune responses and better protection for human angiotensin-converting enzyme 2 (hACE2) transgenic mice against variants of concern (VOCs). In addition, a broadly neutralizing monoclonal antibody was identified from SMG-immunized mice that could neutralize wild-type SARS-CoV-2 and VOCs with subpicomolar potency. Together, these results demonstrate that removal of glycan shields to better expose the conserved sequences has the potential to be an effective and simple approach for developing a broadly protective SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19 , Polissacarídeos , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/metabolismo , Humanos , Camundongos , Modelos Animais , SARS-CoV-2 , Vacinação
7.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149556

RESUMO

Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.


Assuntos
Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Glicosilação , Células HEK293 , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade , Camundongos Endogâmicos BALB C , Resposta a Proteínas não Dobradas , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia
8.
J Biomed Sci ; 29(1): 9, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130876

RESUMO

BACKGROUND: K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. METHODS: We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. RESULTS: We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1-3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric ß-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. CONCLUSIONS: Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Liases , Animais , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Humanos , Cinética , Klebsiella pneumoniae , Camundongos
10.
J Biomed Sci ; 28(1): 80, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814920

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS: We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS: The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS: The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/genética , Humanos , Coelhos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
11.
PLoS Pathog ; 17(10): e1009704, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673836

RESUMO

Development of effective therapeutics for mitigating the COVID-19 pandemic is a pressing global need. Neutralizing antibodies are known to be effective antivirals, as they can be rapidly deployed to prevent disease progression and can accelerate patient recovery without the need for fully developed host immunity. Here, we report the generation and characterization of a series of chimeric antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Some of these antibodies exhibit exceptionally potent neutralization activities in vitro and in vivo, and the most potent of our antibodies target three distinct non-overlapping epitopes within the RBD. Cryo-electron microscopy analyses of two highly potent antibodies in complex with the SARS-CoV-2 spike protein suggested they may be particularly useful when combined in a cocktail therapy. The efficacy of this antibody cocktail was confirmed in SARS-CoV-2-infected mouse and hamster models as prophylactic and post-infection treatments. With the emergence of more contagious variants of SARS-CoV-2, cocktail antibody therapies hold great promise to control disease and prevent drug resistance.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cricetinae , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
12.
PLoS One ; 16(9): e0257191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499677

RESUMO

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes severe respiratory illness in 10-15% of infected individuals and mortality in 2-3%. Vaccines are urgently needed to prevent infection and to contain viral spread. Although several mRNA- and adenovirus-based vaccines are highly effective, their dependence on the "cold chain" transportation makes global vaccination a difficult task. In this context, a stable lyophilized vaccine may present certain advantages. Accordingly, establishing additional vaccine platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vaccinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated viral strains with enhanced safety for human applications have been developed. We have generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate that both candidate recombinant vaccines induce high titers of neutralizing antibodies in C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the hamsters against SARS-CoV-2 infection, supporting that these two vaccines are promising candidates for future development. Finally, our vaccination regimens generated neutralizing antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Feminino , Imunização Secundária , Pulmão/patologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
13.
Front Immunol ; 12: 692700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335603

RESUMO

The highly pathogenic avian influenza (HPAI) H5N1 viruses with the capability of transmission from birds to humans have a serious impact on public health. To date, HPAI H5N1 viruses have evolved into ten antigenically distinct clades that could cause a mismatch of vaccine strains and reduce vaccine efficacy. In this study, the glycan masking and unmasking strategies on hemagglutinin antigen were used for designing two antigens: H5-dm/st2 and H5-tm/st2, and investigated for their elicited immunity using two-dose recombinant H5 (rH5) immunization and a first-dose adenovirus vector prime, followed by a second-dose rH5 protein booster immunization. The H5-dm/st2 antigen was found to elicit broadly neutralizing antibodies against different H5N1 clade/subclade viruses, as well as more stem-binding antibodies to inhibit HA-facilitated membrane fusion activity. Mice immunized with the H5-dm/st2 antigen had a higher survival rate when challenged with homologous and heterologous clades of H5N1 viruses. Mutant influenza virus replaced with the H5-dm/st2 gene generated by reverse genetics (RG) technology amplified well in MDCK cells and embryonated chicken eggs. Again, the inactivated H5N1-dm/st2 RG virus elicited more potent cross-clade neutralizing and anti-fusion antibodies in sera. Therefore, the H5N1-dm/st2 RG virus with the site-specific glycan-masking on the globular head and the glycan-unmasking on the stem region of H5 antigen can be used for further development of cross-protective H5N1 vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/administração & dosagem , Anticorpos Amplamente Neutralizantes/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Epitopos Imunodominantes , Imunogenicidade da Vacina , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Polissacarídeos/administração & dosagem , Animais , Antígenos Virais/imunologia , Embrião de Galinha , Modelos Animais de Doenças , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Polissacarídeos/imunologia
14.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379705

RESUMO

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Modelos Animais de Doenças , Células 3T3 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , Chlorocebus aethiops , Dependovirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética , Células Vero
15.
J Vet Res ; 65(2): 139-145, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34250297

RESUMO

INTRODUCTION: Novel clade 2.3.4.4 H5 highly pathogenic avian influenza virus (HPAIV) outbreaks have occurred since early 2015 in Taiwan and impacted the island economically, like they have many countries. This research investigates the immunogenicity of two HPAIV-like particles to assess their promise as vaccine candidates. MATERIAL AND METHODS: The haemagglutinin (HA) gene derived from clade 2.3.4.4 H5 HPAIV and matrix protein 1 (M1) gene were cloned into the pFastBac Dual baculovirus vector. The resulting recombinant viruses were expressed in Spodoptera frugiperda moth (Sf)21 cells and silkworm pupae to generate Sf21 virus-like particles (VLP) and silkworm pupa VLP. Two-week-old specific pathogen-free chickens were immunised and their humoral and cellular immune responses were analysed. RESULTS: The silkworm pupa VLP had higher haemagglutination competence. Both VLP types elicited haemagglutination inhibition antibodies, anti-HA antibodies, splenic interferon gamma (IFN-γ) and interleukin 4 (IL-4) mRNA expression, and CD4+/CD8+ ratio elevation. However, chickens receiving silkworm pupa VLP exhibited a significantly higher anti-HA antibody titre in ELISA after vaccination. Although Sf21 VLP recipients expressed more IFN-γ and IL-4, the increase in IFN-γ did not significantly raise the CD4+/CD8+ ratio and the increase in IL-4 did not promote anti-HA antibodies. CONCLUSION: Both VLP systems possess desirable immunogenicity in vivo. However, in respect of immunogenic efficacy and the production cost, pupa VLP may be the superior vaccine candidate against clade 2.3.4.4 H5 HPAIV infection.

16.
Sci Rep ; 11(1): 8761, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888840

RESUMO

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , COVID-19/prevenção & controle , Oligodesoxirribonucleotídeos/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Cricetinae , Feminino , Humanos , Imunização , Injeções Intramusculares , Oligodesoxirribonucleotídeos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Carga Viral/efeitos dos fármacos
17.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635919

RESUMO

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Células Produtoras de Anticorpos/imunologia , Sítios de Ligação , Epitopos , Humanos , Imunoglobulina G/imunologia , Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452205

RESUMO

The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 µM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti-SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Adulto , Animais , Antivirais/química , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Reposicionamento de Medicamentos/métodos , Feminino , Humanos , Masculino , Pandemias , Extratos Vegetais/farmacologia , SARS-CoV-2/genética , Células Vero
19.
Hum Vaccin Immunother ; 17(3): 654-655, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32991231

RESUMO

A safe and effective vaccine candidate is urgently needed for the ongoing COVID-19 pandemic, caused by SARS-CoV-2. Here we report that recombinant SARS-CoV-2 RBD protein immunization in mice is able to elicit a strong antibody response and potent neutralizing capability as measured using live or pseudotyped SARS-CoV-2 neutralization assays.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Pandemias/prevenção & controle , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
20.
Methods Mol Biol ; 2248: 139-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185873

RESUMO

Virus-like particle (VLP) technology is an alternative platform for developing vaccines to combat seasonal and pandemic influenza. Influenza VLPs are non-infectious nanoparticles that can elicit effective vaccine immunogenicity in hosts. B-cell-activating factor (BAFF, or BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) superfamily of cytokines. Both BAFF and APRIL are homotrimers that interact with homotrimeric receptors. Here, we report a method of the production of influenza VLPs by molecular incorporation with BAFF or APRIL homotrimers to interact with their receptors. We engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of the hemagglutinin (HA) gene. We also describe procedures for the production of BAFF-VLPs containing H5H7 and H1H5H7 for multi-subtype vaccine development.


Assuntos
Antígenos Virais/imunologia , Fator Ativador de Células B/imunologia , Vacinas contra Influenza/imunologia , Proteínas Recombinantes de Fusão , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Antígenos Virais/genética , Fator Ativador de Células B/genética , Baculoviridae/genética , Clonagem Molecular , Expressão Gênica , Testes de Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Plasmídeos/genética , Proteínas Recombinantes de Fusão/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA