Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36993417

RESUMO

To facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases. APEX2 neither requires metal cations for activity nor contains disulfide bonds, conferring versatility for a wide spectrum of experimental setups. We applied SLAPSHOT followed by quantitative mass spectrometry-based proteomics analysis to examine the immediate and extensive cell surface expansion and ensuing restorative membrane shedding upon the activation of Scott syndrome-linked TMEM16F, a ubiquitously expressed calcium-dependent phospholipid scramblase and ion channel. Time-course data ranging from one to thirty minutes of calcium stimulation using wild-type and TMEM16F deficient cells revealed intricate co-regulation of known protein families, including those in the integrin and ICAM families. Crucially, we identified proteins that are known to reside in intracellular organelles, including ER, as occupants of the freshly deposited membrane, and mitovesicles as an abundant component and contributor to the extracellularly exposed proteome. Our study not only provides the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome, but also presents a blueprint for the application of SLAPSHOT as a general approach for monitoring extracellularly exposed protein dynamics.

2.
Proc Natl Acad Sci U S A ; 119(34): e2204577119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969739

RESUMO

Neurodegeneration arising from aging, injury, or diseases has devastating health consequences. Whereas neuronal survival and axon degeneration have been studied extensively, much less is known about how neurodegeneration affects dendrites, in part due to the limited assay systems available. To develop an assay for dendrite degeneration and repair, we used photo-switchable caspase-3 (caspase-Light-Oxygen-Voltage-sensing [caspase-LOV]) in peripheral class 4 dendrite arborization (c4da) neurons to induce graded neurodegeneration by adjusting illumination duration during development and adulthood in Drosophila melanogaster. We found that both developing and mature c4da neurons were able to survive while sustaining mild neurodegeneration induced by moderate caspase-LOV activation. Further, we observed active dendrite addition and dendrite regeneration in developing and mature c4da neurons, respectively. Using this assay, we found that the mouse Wallerian degeneration slow (WldS) protein can protect c4da neurons from caspase-LOV-induced dendrite degeneration and cell death. Furthermore, our data show that WldS can reduce dendrite elimination without affecting dendrite addition. In summary, we successfully established a photo-switchable assay system in both developing and mature neurons and used WldS as a test case to study the mechanisms underlying dendrite regeneration and repair.


Assuntos
Dendritos/metabolismo , Drosophila melanogaster , Animais , Caspases/metabolismo , Técnicas Citológicas/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Camundongos , Neurônios/metabolismo , Degeneração Walleriana/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(22): e2118240119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613055

RESUMO

Adult hippocampal neurogenesis is critical for learning and memory, and aberrant adult neurogenesis has been implicated in cognitive decline associated with aging and neurological diseases [J. T. Gonçalves, S. T. Schafer, F. H. Gage, Cell 167, 897­914 (2016)]. In previous studies, we observed that the delayed-rectifier voltage-gated potassium channel Kv1.1 controls the membrane potential of neural stem and progenitor cells and acts as a brake on neurogenesis during neonatal hippocampal development [S. M. Chou et al., eLife 10, e58779 (2021)]. To assess the role of Kv1.1 in adult hippocampal neurogenesis, we developed an inducible conditional knockout mouse to specifically remove Kv1.1 from adult neural stem cells via tamoxifen administration. We determined that Kv1.1 deletion in adult neural stem cells causes overproliferation and depletion of radial glia-like neural stem cells, prevents proper adult-born granule cell maturation and integration into the dentate gyrus, and moderately impairs hippocampus-dependent contextual fear learning and memory. Taken together, these findings support a critical role for this voltage-gated ion channel in adult neurogenesis.


Assuntos
Condicionamento Clássico , Hipocampo , Canal de Potássio Kv1.1 , Células-Tronco Neurais , Neurogênese , Neurônios , Animais , Medo , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/fisiologia , Camundongos , Camundongos Knockout , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia
4.
Nature ; 600(7887): 170-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789874

RESUMO

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Assuntos
Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Prurido/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Agonismo Inverso de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/ultraestrutura
5.
J Neurosci ; 39(36): 7102-7117, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31320449

RESUMO

The lateral septum (LS) plays an important role in regulating aggression. It is well recognized that LS lesions lead to a dramatic increase in aggressive behaviors. A better understanding of LS neurophysiology and its functional output is therefore important to assess LS involvement in regulating aggression. The LS is a heterogeneous structure that maintains inputs and outputs with multiple brain regions, and is also divided into subregions that innervate one another. Thus, it is challenging to identify the exact cell type and projections for characterization. In this study, we determined the expression pattern of the calcium-activated chloride channel, TMEM16B, in the LS of both male and female mice. We then investigated the physiological contribution of the calcium-activated chloride channel to LS neuronal signaling. By performing whole-cell patch-clamp recording, we showed that TMEM16B alters neurotransmitter release at the hippocampal-LS synapse, and regulates spike frequency and spike frequency adaptation in subpopulations of LS neurons. We further demonstrated that loss of TMEM16B function promotes lengthened displays of aggressive behaviors by male mice during the resident intruder paradigm. In conclusion, our findings suggest that TMEM16B function contributes to neuronal excitability in subpopulations of LS neurons and the regulation of aggression in male mice.SIGNIFICANCE STATEMENT Aggression is a behavior that arose evolutionarily from the necessity to compete for limited resources and survival. One particular brain region involved in aggression is the lateral septum (LS). In this study, we characterized the expression of the TMEM16B calcium-activated chloride channel in the LS and showed that TMEM16B regulates the action potential firing frequency of LS neurons. We discovered that loss of TMEM16B function lengthens the displays of aggressive behaviors in male mice. These findings suggest that TMEM16B plays an important role in regulating LS neuronal excitability and behaviors associated with LS function, thereby contributing to our understanding of how the LS may regulate aggression.


Assuntos
Potenciais de Ação , Agressão , Anoctaminas/metabolismo , Núcleos Septais/fisiologia , Animais , Anoctaminas/genética , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Septais/citologia , Núcleos Septais/metabolismo , Fatores Sexuais , Sinapses/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos
7.
Neuron ; 103(2): 309-322.e7, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31151773

RESUMO

Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Prostaglandina D2/metabolismo , Temperatura , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Clozapina/farmacologia , Dinoprostona/genética , Dinoprostona/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Prostaglandina D2/genética
8.
Proc Natl Acad Sci U S A ; 116(11): 5126-5134, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804200

RESUMO

Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.


Assuntos
Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Neuroglia/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Axônios/efeitos da radiação , Caspases/metabolismo , DNA Helicases/metabolismo , Dendritos/efeitos da radiação , Proteínas de Drosophila/metabolismo , Ativação Enzimática/efeitos da radiação , Luz , Neuroglia/efeitos da radiação , Células Receptoras Sensoriais/efeitos da radiação
9.
Proc Natl Acad Sci U S A ; 116(4): 1309-1318, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30622179

RESUMO

Calcium-activated phospholipid scramblase mediates the energy-independent bidirectional translocation of lipids across the bilayer, leading to transient or, in the case of apoptotic scrambling, sustained collapse of membrane asymmetry. Cells lacking TMEM16F-dependent lipid scrambling activity are deficient in generation of extracellular vesicles (EVs) that shed from the plasma membrane in a Ca2+-dependent manner, namely microvesicles. We have adapted chemical induction of giant plasma membrane vesicles (GPMVs), which require both TMEM16F-dependent phospholipid scrambling and calcium influx, as a kinetic assay to investigate the mechanism of TMEM16F activity. Using the GPMV assay, we identify and characterize both inactivating and activating mutants that elucidate the mechanism for TMEM16F activation and facilitate further investigation of TMEM16F-mediated lipid translocation and its role in extracellular vesiculation.


Assuntos
Anoctaminas/metabolismo , Transporte Biológico/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Camundongos , Fosfolipídeos/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(45): E10740-E10747, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348769

RESUMO

Orexin (also known as hypocretin) neurons in the hypothalamus play an essential role in sleep-wake control, feeding, reward, and energy homeostasis. The likelihood of anesthesia and sleep sharing common pathways notwithstanding, it is important to understand the processes underlying emergence from anesthesia. In this study, we investigated the role of the orexin system in anesthesia emergence, by specifically activating orexin neurons utilizing the designer receptors exclusively activated by designer drugs (DREADD) chemogenetic approach. With injection of adeno-associated virus into the orexin-Cre transgenic mouse brain, we expressed the DREADD receptor hM3Dq specifically in orexin neurons and applied the hM3Dq ligand clozapine to activate orexin neurons. We monitored orexin neuronal activities by c-Fos staining and whole-cell patch-clamp recording and examined the consequence of orexin neuronal activation via EEG recording. Our results revealed that the orexin-DREADD mice with activated orexin neurons emerged from anesthesia with significantly shorter latency than the control mice. As an indication of reduced pain sensitivity, these orexin-DREADD mice took longer to respond to the 55 °C thermal stimuli in the hot plate test and exhibited significantly less frequent licking of the formalin-injected paw in the formalin test. Our study suggests that approaches to activate the orexin system can be beneficial in postoperative recovery.


Assuntos
Período de Recuperação da Anestesia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Dor/genética , Anestésicos Inalatórios , Animais , Clozapina/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Eletroencefalografia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Isoflurano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Dor/fisiopatologia , Dor/prevenção & controle , Medição da Dor , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas da Serotonina/farmacologia , Técnicas Estereotáxicas
11.
Neuron ; 97(5): 1063-1077.e4, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29478917

RESUMO

Calcium-activated chloride channels (CaCCs) formed by TMEM16A or TMEM16B are broadly expressed in the nervous system, smooth muscles, exocrine glands, and other tissues. With two calcium-binding sites and a pore within each monomer, the dimeric CaCC exhibits voltage-dependent calcium sensitivity. Channel activity also depends on the identity of permeant anions. To understand how CaCC regulates neuronal signaling and how CaCC is, in turn, modulated by neuronal activity, we examined the molecular basis of CaCC gating. Here, we report that voltage modulation of TMEM16A-CaCC involves voltage-dependent occupancy of calcium- and anion-binding site(s) within the membrane electric field as well as a voltage-dependent conformational change intrinsic to the channel protein. These gating modalities all critically depend on the sixth transmembrane segment.


Assuntos
Anoctamina-1/química , Anoctamina-1/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Animais , Anoctamina-1/genética , Canais de Cloreto/genética , Células HEK293 , Humanos , Camundongos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
12.
Neuron ; 95(5): 1103-1111.e4, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858616

RESUMO

Ca2+-activated ion channels shape membrane excitability and Ca2+ dynamics in response to cytoplasmic Ca2+ elevation. Compared to the Ca2+-activated K+ channels, known as BK and SK channels, the physiological importance of Ca2+-activated Cl- channels (CaCCs) in neurons has been largely overlooked. Here we report that CaCCs coexist with BK and SK channels in inferior olivary (IO) neurons that send climbing fibers to innervate cerebellar Purkinje cells for the control of motor learning and timing. Ca2+ influx through the dendritic high-threshold voltage-gated Ca2+ channels activates CaCCs, which contribute to membrane repolarization of IO neurons. Loss of TMEM16B expression resulted in the absence of CaCCs in IO neurons, leading to markedly diminished action potential firing of IO neurons in TMEM16B knockout mice. Moreover, these mutant mice exhibited severe cerebellar motor learning deficits. Our findings thus advance the understanding of the neurophysiology of CaCCs and the ionic basis of IO neuron excitability.


Assuntos
Cerebelo/fisiologia , Canais de Cloreto/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Núcleo Olivar/metabolismo , Potenciais de Ação/fisiologia , Animais , Anoctaminas , Cálcio/metabolismo , Cerebelo/citologia , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Núcleo Olivar/citologia , Células de Purkinje/fisiologia
13.
Cell Rep ; 20(8): 1855-1866, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834749

RESUMO

The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.


Assuntos
Aminobutiratos/metabolismo , Proteínas de Drosophila/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Drosophila melanogaster , Feminino , Homeostase , Masculino , Transdução de Sinais , Canais de Sódio/metabolismo
14.
Neuron ; 93(2): 379-393, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28065648

RESUMO

Abnormalities in dendritic spines are manifestations of several neurodevelopmental and psychiatric diseases. TAOK2 is one of the genes in the 16p11.2 locus, copy number variations of which are associated with autism and schizophrenia. Here, we show that the kinase activity of the serine/threonine kinase encoded by TAOK2 is required for spine maturation. TAOK2 depletion results in unstable dendritic protrusions, mislocalized shaft-synapses, and loss of compartmentalization of NMDA receptor-mediated calcium influx. Using chemical-genetics and mass spectrometry, we identified several TAOK2 phosphorylation targets. We show that TAOK2 directly phosphorylates the cytoskeletal GTPase Septin7, at an evolutionary conserved residue. This phosphorylation induces translocation of Septin7 to the spine, where it associates with and stabilizes the scaffolding protein PSD95, promoting dendritic spine maturation. This study provides a mechanistic basis for postsynaptic stability and compartmentalization via TAOK2-Sept7 signaling, with implications toward understanding the potential role of TAOK2 in neurological deficits associated with the 16p11.2 region.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurogênese/genética , Septinas/metabolismo , Animais , Cálcio/metabolismo , Compartimento Celular , Proteína 4 Homóloga a Disks-Large , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Espectrometria de Massas , Microscopia Confocal , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo
15.
J Physiol ; 594(22): 6701-6713, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27377235

RESUMO

KEY POINTS: Kv1.2 and related voltage-gated potassium channels have a highly conserved N-linked glycosylation site in the first extracellular loop, with complex glycosylation in COS-7 cells similar to endogenous Kv1.2 glycosylation in hippocampal neurons. COS-7 cells expressing Kv1.2 show a crucial role of this N-linked glycosylation in the forward trafficking of Kv1.2 to the cell membrane. Although both wild-type and non-glycosylated mutant Kv1.2 channels that have reached the cell membrane are internalized at a comparable rate, mutant channels are degraded at a faster rate. Treatment of wild-type Kv1.2 channels on the cell surface with glycosidase to remove sialic acids also results in the faster degradation of internalized channels. Glycosylation of Kv1.2 is important with respect to facilitating trafficking to the cell membrane and enhancing the stability of channels that have reached the cell membrane. ABSTRACT: Studies in cultured hippocampal neurons and the COS-7 cell line demonstrate important roles for N-linked glycosylation of Kv1.2 channels in forward trafficking and protein degradation. Kv1.2 channels can contain complex N-linked glycans, which facilitate cell surface expression of the channels. Additionally, the protein stability of cell surface-expressed Kv1.2 channels is affected by glycosylation via differences in the degradation of internalized channels. The present study reveals the importance of N-linked complex glycosylation in boosting Kv1.2 channel density. Notably, sialic acids at the terminal sugar branches play an important role in dampening the degradation of Kv1.2 internalized from the cell membrane to promote its stability.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio Kv1.2/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Feminino , Glicosilação , Neurônios/metabolismo , Polissacarídeos/metabolismo , Gravidez , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Sci Transl Med ; 7(315): 315ra190, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26606969

RESUMO

Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular lipid and protein components to target cells, yet their function in disease is only now being explored. We found that neutrophil-derived MVs were increased in concentration in synovial fluid from rheumatoid arthritis patients compared to paired plasma. Synovial MVs overexpressed the proresolving, anti-inflammatory protein annexin A1 (AnxA1). Mice deficient in TMEM16F, a lipid scramblase required for microvesiculation, exhibited exacerbated cartilage damage when subjected to inflammatory arthritis. To determine the function of MVs in inflammatory arthritis, toward the possibility of MV-based therapeutics, we examined the role of immune cell-derived MVs in rodent models and in human primary chondrocytes. In vitro, exogenous neutrophil-derived AnxA1(+) MVs activated anabolic gene expression in chondrocytes, leading to extracellular matrix accumulation and cartilage protection through the reduction in stress-adaptive homeostatic mediators interleukin-8 and prostaglandin E2. In vivo, intra-articular injection of AnxA1(+) MV lessened cartilage degradation caused by inflammatory arthritis. Arthritic mice receiving adoptive transfer of whole neutrophils displayed abundant MVs within cartilage matrix and revealed that MVs, but not neutrophils themselves, can penetrate cartilage. Mechanistic studies support a model whereby MV-associated AnxA1 interacts with its receptor FPR2 (formyl peptide receptor 2)/ALX, increasing transforming growth factor-ß production by chondrocytes, ultimately leading to cartilage protection. We envisage that MVs, either directly or loaded with therapeutics, can be harnessed as a unique therapeutic strategy for protection in diseases associated with cartilage degeneration.


Assuntos
Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Neutrófilos/metabolismo , Animais , Humanos , Camundongos , Líquido Sinovial/metabolismo , Fator de Crescimento Transformador beta/biossíntese
17.
Neuron ; 84(5): 968-82, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25456499

RESUMO

Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.


Assuntos
Espinhas Dendríticas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/fisiologia , Fatores Etários , Animais , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Humanos , MAP Quinase Quinase Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Long-Evans
18.
Nat Med ; 20(6): 624-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24836577

RESUMO

Cardiomyocyte T tubules are important for regulating ion flux. Bridging integrator 1 (BIN1) is a T-tubule protein associated with calcium channel trafficking that is downregulated in failing hearts. Here we find that cardiac T tubules normally contain dense protective inner membrane folds that are formed by a cardiac isoform of BIN1. In mice with cardiac Bin1 deletion, T-tubule folding is decreased, which does not change overall cardiomyocyte morphology but leads to free diffusion of local extracellular calcium and potassium ions, prolonging action-potential duration and increasing susceptibility to ventricular arrhythmias. We also found that T-tubule inner folds are rescued by expression of the BIN1 isoform BIN1+13+17, which promotes N-WASP-dependent actin polymerization to stabilize the T-tubule membrane at cardiac Z discs. BIN1+13+17 recruits actin to fold the T-tubule membrane, creating a 'fuzzy space' that protectively restricts ion flux. When the amount of the BIN1+13+17 isoform is decreased, as occurs in acquired cardiomyopathy, T-tubule morphology is altered, and arrhythmia can result.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Análise de Variância , Animais , Sequência de Bases , Cálcio/metabolismo , Clonagem Molecular , Primers do DNA/genética , Sondas de DNA/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Miócitos Cardíacos/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real
19.
Elife ; 2: e00862, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24192034

RESUMO

TMEM16A and TMEM16B are calcium-activated chloride channels (CaCCs) with important functions in mammalian physiology. Whether distant relatives of the vertebrate TMEM16 families also form CaCCs is an intriguing open question. Here we report that a TMEM16 family member from Drosophila melanogaster, Subdued (CG16718), is a CaCC. Amino acid substitutions of Subdued alter the ion selectivity and kinetic properties of the CaCC channels heterologously expressed in HEK 293T cells. This Drosophila channel displays characteristics of classic CaCCs, thereby providing evidence for evolutionarily conserved biophysical properties in the TMEM16 family. Additionally, we show that knockout flies lacking subdued gene activity more readily succumb to death caused by ingesting the pathogenic bacteria Serratia marcescens, suggesting that subdued has novel functions in Drosophila host defense. DOI: http://dx.doi.org/10.7554/eLife.00862.001.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/fisiologia , Drosophila melanogaster/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calmodulina/fisiologia , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
20.
Neuron ; 80(3): 658-74, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24183018

RESUMO

Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Modelos Moleculares , Neurônios/fisiologia , Animais , Humanos , Canais Iônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...