Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Immunol ; 14: 1131448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051241

RESUMO

SMARCA4-deficient non-small cell carcinoma is an aggressive neoplasm with poor outcome. Several studies have highlighted its immunochemistry, pathophysiology, and underlying mechanisms, but studies of its definite treatment are few. Here, we report on a 69-year-old male with heterogenous pathological presentations of SMARCA4-deficient non-small cell carcinoma. He initially presented with neck lymphadenopathies. Immunohistochemistry staining and genomic profiling confirmed the diagnosis of SMARCA4-deficient non-small cell carcinoma. The patient responded well to immune checkpoint inhibitors with nivolumab. However, new lesions with various pathological presentations and various responses to nivolumab appeared during the treatment course. The patient survived more than 3 years from the initial diagnosis. This case shows the efficacy of nivolumab to treat SMARCA4-deficient non-small cell lung carcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Neoplasias Pulmonares , Masculino , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Nivolumabe/uso terapêutico , Carcinoma/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
Toxicol Appl Pharmacol ; 455: 116258, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174671

RESUMO

A characteristic of cytochrome P450 (CYP) enzymes is their ability to generate H2O2, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. H2O2 production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched ß-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes. In the presence of 7,8-benzoflavone (2.0 µM) for CYP1A2 and 4-methylpyrazole (32 µM) or DMSO (16 mM) for CYP2E1, monooxygenase activity was blocked without affecting NADPH oxidase activity for both the recombinant enzymes and microsomal preparations. Ketoconazole (1.0 µM), a form selective inhibitor for CYP3A subfamily enzymes, completely inhibited monooxygenase activity of rat recombinant CYP3A1/3A2 and CYP3A subfamily in rat liver microsomes; it also partially inhibited NADPH oxidase activity. 7,8-benzoflavone is a type I ligand, which competes with substrate binding, while 4-methylpyrazole and DMSO are type II heme binding ligands. Interactions of heme with these type II ligands was not sufficient to interfere with oxygen activation, which is required for NADPH oxidase activity. Ketoconazole, a type II ligand known to bind multiple sites on CYP3A subfamily enzymes in close proximity to heme, also interfered, at least in part, with oxygen activation. These data indicate that form specific inhibitors can be used to distinguish between monooxygenase reactions and H2O2 generating NADPH oxidase of CYP1A2 and CYP2E1. Mechanisms by which ketoconazole inhibits CYP3A NADPH oxidase remain to be determined.


Assuntos
Citocromo P-450 CYP1A2 , Inibidores das Enzimas do Citocromo P-450 , Ratos , Animais , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Peróxido de Hidrogênio/metabolismo , NADP/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Cetoconazol/farmacologia , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Naftoflavona/farmacologia , Fomepizol , Ligantes , Dimetil Sulfóxido , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Heme/metabolismo , Dexametasona/farmacologia , Oxigênio/metabolismo
3.
Transl Oncol ; 25: 101508, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985204

RESUMO

Aberrant metabolism has been proposed as one of the emerging hallmarks of cancer. However, the interplay between metabolic disorders and cancer metastasis remains to be defined. To explore the sophisticated metabolic processes during metastatic progression, we analyzed differentially expressed metabolic genes during the epithelial-mesenchymal transition (EMT) of lung cancer cells and defined the EMT-associated metabolic gene signature in lung adenocarcinoma patients. We found that the glycosaminoglycan (GAG)-chondroitin sulfate (CS) biosynthesis pathway was upregulated in the mesenchymal state of lung cancer and associated with poor prognosis. Notably, carbohydrate sulfotransferase 11 (CHST11), a crucial CS biosynthetic enzyme, was confirmed as a poor prognosis marker in non-small cell lung cancer (NSCLC) by immunohistochemical analysis. Moreover, forced CHST11 expression promoted invasion and metastasis, which was abolished by depleting the final product of CS biosynthesis by chondroitinase ABC treatment or active-domain negative CHST11. In vivo metastasis mouse models showed that CHST11 increased lung colonies number and sulfated mucosubstance expression. Furthermore, microarray analysis revealed ceruloplasmin (CP), which facilitated iron metabolism, was the downstream effector of CHST11. CP was upregulated by CHST11 through interferon-γ signaling pathway stimulation and related to unfavorable prognosis. Both forced CP expression and long-term iron treatment increased invasion and lung colony formation. Furthermore, we found 3-AP, an iron chelator, hampered the CHST11-induced metastasis. Our findings implicate that the novel CHST11-CP-iron axis enhances EMT and may serve as a new therapeutic target to treat NSCLC patients.

4.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794816

RESUMO

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Br J Cancer ; 127(7): 1304-1311, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842545

RESUMO

BACKGROUND: The clinical utility of comprehensive genomic profiling (CGP) for guiding treatment has gradually become the standard-of-care procedure for colorectal carcinoma (CRC). Here, we comprehensively assess emerging targeted therapy biomarkers using CGP in primary CRC. METHODS: A total of 575 primary CRCs were sequenced by ACTOnco® assay for genomic alterations, tumour mutational burden (TMB), and microsatellite instability (MSI). RESULTS: Eighteen percent of patients were detected as MSI-High (MSI-H), and the remaining cases were classified as microsatellite stable (MSS). Driver mutation prevalence in MSS CRCs were APC (74%), TP53 (67%), KRAS (47%), PIK3CA (21%) and BRAF (13%). The median TMBs for MSI-H and MSS patients were 37.8 mutations per mega base (mut/Mb) and 3.9 mut/Mb, respectively. Forty-seven percent of MSI-H CRC harboured at least one loss-of-function mutations in genes that may hamper immune checkpoint blockade. Among MSS RAS/RAF wild-type CRCs, 59% had at least one actionable mutation that may compromise the efficacy of anti-EGFR therapy. For late-stage CRC, 51% of patients are eligible for standard care actionability and the remaining 49% could be enrolled in clinical trials with investigational drugs. CONCLUSIONS: This study highlights the essential role of CGP for identifying rational targeted therapy options in CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Drogas em Investigação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Target Oncol ; 17(3): 355-368, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35699834

RESUMO

BACKGROUND: Breast cancers are heterogeneous with variable clinical courses and treatment responses. OBJECTIVE: We sought to evaluate dynamic changes in the molecular landscape of HER2-negative tumors treated with chemotherapy and anti-angiogenic agents. PATIENTS AND METHODS: Newly diagnosed HER2-negative breast cancer patients received low-dose sunitinib or bevacizumab prior to four 2-weekly cycles of dose-dense doxorubicin and cyclophosphamide. Tumor biopsies were obtained at baseline, after 2 weeks and after 8 weeks of chemotherapy. Next-generation sequencing was performed to assess for single nucleotide variants (SNVs) and copy number alterations (CNAs) of 440 cancer-related genes (ACTOnco®). Observed genomic changes were correlated with the Miller-Payne histological response to treatment. RESULTS: Thirty-four patients received sunitinib and 18 received bevacizumab. In total, 77% were hormone receptor positive (HER2-/HR+) and 23% were triple negative breast cancers (TNBC). New therapy-induced mutations were infrequent, occurring only in 13%, and appeared early after a single cycle of treatment. Seventy-two percent developed changes in the variant allele frequency (VAF) of pathogenic SNVs; the majority (51%) of these changes occurred early at 2 weeks and were sustained for 8 weeks. Changes in VAF of SNVs were most commonly seen in the PI3K/mTOR/AKT pathway; 13% developed changes in pathogenic mutations, which potentially confer sensitivity to PIK3CA inhibitors. Tumors with poor Miller-Payne response to treatment were less likely to experience changes in VAF of SNVs compared with those with good response (50% [7/14] vs 15% [4/24] had no changes observed at any timepoint, p = 0.029). CONCLUSIONS: Serial molecular profiling identifies early therapy-induced genomic alterations, which may guide future selection of targeted therapies in breast cancer patients who progress after standard chemotherapy. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02790580 (first posted June 6, 2016).


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Inibidores da Angiogênese/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Sunitinibe/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406559

RESUMO

Genetic aberrations involving DNA damage repair (DDR) remain underexplored in gastrointestinal stromal tumors (GISTs). We characterized DDR abnormalities using targeted next-generation sequencing and multiplex ligation-dependent probe amplification, and performed immunofluorescence (IF) and immunohistochemistry (IHC) analyses of γH2AX and 53BP1. Consistent with IF-validated nuclear co-localization, γH2AX and 53BP1 showed robust correlations in expression levels, as did both biomarkers between IF and IHC. Without recurrent pathogenic single-nucleotide variants, heterozygous deletions (HetDels) frequently targeted DNA damage-sensing genes, with CHEK2-HetDel being the most prevalent. Despite their chromosomal proximity, BRCA2 and RB1 were occasionally hit by HetDels and were seldom co-deleted. HetDels of CHEK2 and BRCA2 showed a preference for older age groups, while RB1-HetDel predominated in the non-gastric, high-risk, and 53BP1-overexpressing GISTs. Higher risk levels were consistently related to γ-H2AX or 53BP1 overexpression (all p < 0.01) in two validation cohorts, while only 53BP1 overexpression was associated with the deletion of KIT exon 11 (KITex11-del) among genotyped GISTs. Low expressers of dual biomarkers were shown by univariate analysis to have longer disease-free survival (p = 0.031). However, higher risk levels, epithelioid histology, and KITex11-del retained prognostic independence. Conclusively, IHC is a useful surrogate of laborious IF in the combined assessment of 53BP1 and γ-H2AX to identify potential DDR-defective GISTs, which were frequently aberrated by HetDels and a harbinger of progression.

8.
Chem Res Toxicol ; 35(4): 636-650, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35312310

RESUMO

Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins. A central mediator of the DNA damage response is p53, a protein that plays a critical role in regulating DNA repair. We found that HN2 causes cytosolic and nuclear accumulation of p53 in HaCaT keratinocytes; HN2 also induced post-translational modifications on p53 including S15 phosphorylation and K382 acetylation, which enhance p53 stability, promote DNA repair, and mediate cellular metabolic responses to stress. HN2 also cross-linked p53, forming dimers and high-molecular-weight protein complexes in the cells. Cross-linked multimers were also modified by K48-linked ubiquitination indicating that they are targets for proteasome degradation. HN2-induced modifications transiently suppressed the transcriptional activity of p53. Using recombinant human p53, HN2 alkylation was found to be concentration- and redox status-dependent. Dithiothreitol-reduced protein was more efficiently cross-linked indicating that p53 cysteine residues play a key role in protein modification. LC-MS/MS analysis revealed that HN2 directly alkylated p53 at C124, C135, C141, C176, C182, C275, C277, H115, H178, K132, and K139, forming both monoadducts and cross-links. The formation of intermolecular complexes was a consequence of HN2 cross-linked cysteine residues between two molecules of p53. Together, these data demonstrate that p53 is a molecular target for mustard vesicants. Modification of p53 likely mediates cellular responses to HN2 including DNA repair and cell survival contributing to vesicant-induced cytotoxicity.


Assuntos
Mecloretamina , Proteína Supressora de Tumor p53 , Cromatografia Líquida , Cisteína , Humanos , Queratinócitos , Mecloretamina/química , Espectrometria de Massas em Tandem
9.
Onco Targets Ther ; 14: 3895-3901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234458

RESUMO

Combined hepatocellular cholangiocarcinoma (cHCC-CC) is a rare subtype of primary liver malignancy characterized by aggressive behavior and poor prognosis. Radial surgical resection is the standard curative treatment. However, effective therapeutic options for recurrent or metastatic cHCC-CC are still lacking, mainly because of an insufficient understanding of the molecular and genomic alterations of cHCC-CC, preventing the discovery of specialized targeting therapy. Here, we present the case of a patient with metastatic cHCC-CC on first-line treatment of gemcitabine, cisplatin, and nab-paclitaxel. A comprehensive genomic profile revealed four clinically relevant single nucleotide variants (BRCA2, PIK3C2G, RET, and TP53), two amplified genomic regions (CRKL and MAPK1), and 11 heterozygous genomic deletions (BAP1, CDKN2A, PTCH1, TSC1, BRCA2, RB1, RAD51, PALB2, TSC2, SMAD4, and STK11). The patient underwent olaparib treatment and achieved a remarkable and sustained tumor response. Our experience indicates that BRCA2 mutations could be a potential therapeutic target for patients with cHCC-CC.

10.
J Biomed Sci ; 28(1): 29, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888099

RESUMO

BACKGROUND: Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients. METHODS: Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses. Expression levels and functional roles of candidate biomarkers were respectively evaluated by immunohistochemical staining in N/T paired tissue (n = 120) and MTS, colony formation, and transwell migration/invasion assays in HCC cell lines. Associations of clinicopathological features and prognoses with candidate biomarkers in HCC patients were analyzed from GEO and TCGA datasets and our recruited cohort. RESULTS: We found that the transmembrane P24 trafficking protein 9 (TMED9) protein was elevated in HCC tissues according to a global proteomic analysis. Higher messenger (m)RNA and protein levels of TMED9 were observed in HCC tissues compared to normal liver tissues or pre-neoplastic lesions. The TMED9 mRNA expression level was significantly associated with an advanced stage and a poor prognosis of overall survival (OS, p = 0.00084) in HCC patients. Moreover, the TMED9 protein expression level was positively correlated with vascular invasion (p = 0.026), OS (p = 0.044), and disease-free survival (p = 0.015) in our recruited Taiwanese cohort. In vitro, manipulation of TMED9 expression in HCC cells significantly affected cell migratory, invasive, proliferative, and colony-forming abilities. CONCLUSIONS: Ours is the first work to identify an oncogenic role of TMED9 in HCC cells and may provide insights into the application of TMED9 as a novel predictor of clinical outcomes and a potential therapeutic target in patients with HCC.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Expressão Gênica , Neoplasias Hepáticas/fisiopatologia , RNA Mensageiro/metabolismo , Proteínas de Transporte Vesicular/análise , Idoso , Carcinoma Hepatocelular/diagnóstico , Cromatografia Líquida , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteômica , Espectrometria de Massas em Tandem
11.
Cell Commun Signal ; 18(1): 164, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087151

RESUMO

BACKGROUND: Chemotherapy is currently one of the most effective treatments for advanced breast cancer. Anti-microtubule agents, including taxanes, eribulin and vinca-alkaloids are one of the primary major anti-breast cancer chemotherapies; however, chemoresistance remains a problem that is difficult to solve. We aimed to discover novel candidate protein targets to combat chemoresistance in breast cancer. METHODS: A lentiviral shRNA-based high-throughput screening platform was designed and developed to screen the global kinome to find new therapeutic targets in paclitaxel-resistant breast cancer cells. The phenotypes were confirmed with alternative expression in vitro and in vivo. Molecular mechanisms were investigated using global phosphoprotein arrays and expression microarrays. Global microarray analysis was performed to determine TAOK3 and genes that induced paclitaxel resistance. RESULTS: A serine/threonine kinase gene, TAOK3, was identified from 724 screened kinase genes. TAOK3 shRNA exhibited the most significant reduction in IC50 values in response to paclitaxel treatment. Ectopic downregulation of TAOK3 resulted in paclitaxel-resistant breast cancer cells sensitize to paclitaxel treatment in vitro and in vivo. The expression of TAOK3 also was correlated to sensitivity to two other anti-microtubule drugs, eribulin and vinorelbine. Our TAOK3-modulated microarray analysis indicated that NF-κB signaling played a major upstream regulation role. TAOK3 inhibitor, CP43, and shRNA of NF-κB both reduced the paclitaxel resistance in TAOK3 overexpressed cells. In clinical microarray databases, high TAOK3 expressed breast cancer patients had poorer prognoses after adjuvant chemotherapy. CONCLUSIONS: Here we identified TAOK3 overexpression increased anti-microtubule drug resistance through upregulation of NF-κB signaling, which reduced cell death in breast cancer. Therefore, inhibition of the interaction between TAOK3 and NF-κB signaling may have therapeutic implications for breast cancer patients treated with anti-microtubule drugs. Video abstract.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Microtúbulos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/farmacologia , Prognóstico , Taxoides/farmacologia
12.
Oncogenesis ; 9(8): 78, 2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32862200

RESUMO

Cholesterol is the major component of lipid rafts. Squalene synthase (SQS) is a cholesterol biosynthase that functions in cholesterol biosynthesis, modulates the formation of lipids rafts and promotes lung cancer metastasis. In this study, we investigated the lipid raft-associated pathway of SQS in lung cancer. Gene expression microarray data revealed the upregulation of secreted phosphoprotein 1 (SPP1; also known as osteopontin, OPN) in CL1-0/SQS-overexpressing cells. Knockdown of OPN in SQS-overexpressing cells inhibits their migration and invasion, whereas an OPN treatment rescues the migration and invasion of SQS knockdown cells. High OPN expression is associated with lymph node status, advanced stage and poor prognosis in patients with lung cancer. Moreover, patients with high SQS expression and high OPN expression show poor survival compared with patients with low SQS expression and low OPN expression. SQS induces the phosphorylation of Src and ERK1/2 via OPN, resulting in increased expression of MMP1 and subsequent metastasis of lung cancer cells. Based on our findings, SQS expression increases the expression of OPN and phosphorylation of Src through cholesterol synthesis to modulate the formation of lipid rafts. SQS may represent a therapeutic strategy for lung cancer.

13.
Cancer Lett ; 485: 27-37, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32417395

RESUMO

The tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5. High expression of IMPAD1 was associated with a poorer clinical phenotype in lung cancer patients, with reduced survival and increased lymph node metastasis. Knockdown of IMPAD1 significantly inhibited migration/invasion abilities and metastasis in vitro and in vivo. Upregulation of IMPAD1 and subsequent accumulation of AMP in cells increased the pAMPK, leading to Notch1 and HEY1 upregulation. As AMP is an ADORA1 agonist, treatment with ADORA1 inhibitor reduced the expression of pAMPK and HEY1 expression in IMPAD1-overexpressing cells. IMPAD1 caused mitochondria dysfunction by inhibiting mitochondrial Complex I activity, which reduced mitochondrial ROS levels and activated the AMPK-HEY1 pathway. Collectively this study supports the multipotent role of IMPAD1 in promotion of lung cancer metastasis by simultaneously increasing AMP levels, inhibition of Complex I activity to decrease ROS levels, thereby activating AMPK-Notch1-HEY1 signaling, and providing an alternative metabolic pathway in energy stress conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch1/fisiologia , Animais , Linhagem Celular Tumoral , Transporte de Elétrons , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica , Receptor A1 de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Microambiente Tumoral
14.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316576

RESUMO

Monoamine oxidases (MAOs) including MAOA and MAOB are enzymes located on the outer membranes of mitochondria, which are responsible for catalyzing monoamine oxidation. Recently, increased level of MAOs were shown in several cancer types. However, possible roles of MAOs have not yet been elucidated in the progression and prognosis of colorectal carcinoma (CRC). We therefore analyzed the importance of MAOs in CRC by an in silico analysis and tissue microarrays. Several independent cohorts indicated that high expression of MAOB, but not MAOA, was correlated with a worse disease stage and poorer survival. In total, 203 colorectal adenocarcinoma cases underwent immunohistochemical staining of MAOs, and associations with clinicopathological parameters and patient outcomes were evaluated. We found that MAOB is highly expressed in CRC tissues compared to normal colorectal tissues, and its expression was significantly correlated with a higher recurrence rate and a poor prognosis. Moreover, according to the univariate and multivariate analyses, we found that MAOB could be an independent prognostic factor for overall survival and disease-free survival, and its prognostic value was better than T and N stage. Furthermore, significant positive and negative correlations of MAOB with mesenchymal-type and epithelial-type gene expressions were observed in CRC tissues. According to the highlighted characteristics of MAOB in CRC, MAOB can be used as a novel indicator to predict the progression and prognosis of CRC patients.


Assuntos
Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Monoaminoxidase/metabolismo , Regulação para Cima , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Análise Serial de Tecidos
15.
Toxicol Lett ; 326: 78-82, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32173488

RESUMO

Mustard vesicants, including sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) and nitrogen mustard (bis(2-chloroethyl)methylamine, HN2) are cytotoxic blistering agents synthesized for chemical warfare. Because they contain highly reactive electrophilic chloroethyl side chains, they readily react with cellular macromolecules like DNA forming monofunctional and bifunctional adducts. By targeting DNA, mustards can compromise genomic integrity, disrupt the cell cycle, and cause mutations and cytotoxicity. To protect against genotoxicity following exposure to mustards, cells initiate a DNA damage response (DDR). This involves activation of signaling cascades including ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-related) and DNA-PKcs (DNA-dependent protein kinase, catalytic unit). Signaling induced by the DDR leads to the recruitment and activation of repair related proteins such as phospho H2AX and phospho p53 to sites of DNA lesions. Excessive DNA modifications by mustards can overwhelm DNA repair leading to single and double strand DNA breaks, cytotoxicity and tissue damage, sometimes leading to cancer. Herein we summarize DDR signaling pathways induced by SM, HN2 and the half mustard, 2-chloroethyl ethyl sulfide (CEES). At the present time, little is known about how mustard-induced DNA damage leads to the activation of DDR signaling. A better understanding of mechanisms by which mustard vesicants induce the DDR may lead to the development of countermeasures effective in mitigating tissue injury.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mecloretamina/toxicidade , Gás de Mostarda/toxicidade , Transdução de Sinais/efeitos dos fármacos , Humanos , Mostardeira/química
16.
Sci Rep ; 9(1): 14624, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601833

RESUMO

The basic leucine zipper and the W2 domain-containing protein 1 (BZW1) plays a key role in the cell cycle and transcriptionally control the histone H4 gene during G1/S phase. Since cellular proliferation rates are frequently dysregulated in human cancers, we identified the characteristics of BZW1 in cancer cells and analyzed its prognostic value in lung cancer patients. By searching public databases, we found that high BZW1 expression was significantly correlated with poor survival rate in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma. Similar trends were also shown in an array comprising NSCLC patient tissue. Knockdown of BZW1 inhibited cell metastatic ability, but did not affect the cell proliferation rate of NSCLC cells. From transcriptomics data mining, we found that coordination between BZW1 and EGFR overexpression was correlated with a worse outcome for lung cancer patients. In summary, BZW1 expression serves as an independent prognostic factor of NSCLC, especially in lung adenocarcinoma. Overexpression of BZW1 in lung cancer cells revealed a novel pathway underlying the induction of lung cancer metastasis.


Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/patologia , Células A549 , Adenocarcinoma de Pulmão/mortalidade , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Intervalo Livre de Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/epidemiologia , Estudos Retrospectivos , Taxa de Sobrevida , Regulação para Cima
17.
Sci Rep ; 9(1): 12329, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444368

RESUMO

Cancer cells utilize altered bioenergetics to fuel uncontrolled proliferation and progression. At the core of bioenergetics, adenine nucleotides are the building blocks for nucleotide synthesis, energy transfer and diverse metabolic processes. Adenylate kinases (AK) are ubiquitous phosphotransferases that catalyze the conversion of adenine nucleotides and regulate the homeostasis of nucleotide ratios within cellular compartments. Recently, different isoforms of AK have been shown to induce metabolic reprograming in cancer and were identified as biomarkers for predicting disease progression. Here we aim to systemically analyze the impact of all AK-associated gene signatures on lung adenocarcinoma patient survival and decipher the value for therapeutic interventions. By analyzing TCGA Lung Adenocarcinoma (LUAD) RNA Seq data, we found gene signatures from AK4 and AK1 have higher percentage of prognostic genes compared to other AK-gene signatures. A 118-gene signature was identified from consensus gene expression in AK1 and AK4 prognostic gene signatures. Immunohistochemistry (IHC) analyses in 140 lung adenocarcinoma patients showed overexpression of AK4 significantly correlated with worse overall survival (P = 0.001) whereas overexpression of AK1 significantly associated with good prognosis (P = 0.009). Furthermore, reduced AK4 expression by shRNA reduced the EGFR protein expression in EGFR mutation cells. The inhibition of AK4-AK1 signal might provide a potential target for synergistic effect in target therapy in lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenilato Quinase/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/enzimologia , Adenilato Quinase/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/enzimologia , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Resultado do Tratamento
18.
J Clin Med ; 8(7)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330880

RESUMO

Metastasis remains the major cause of death from colon cancer. We intend to identify differentially expressed genes that are associated with the metastatic process and prognosis in colon cancer. ATP synthase epsilon subunit (ATP5E) gene was found to encode the mitochondrial F0F1 ATP synthase subunit epsilon that was overexpressed in tumor cells compared to their normal counterparts, while other genes encoding the ATP synthase subunit were repressed in public microarray datasets. CRC cells in which ATP5E was silenced showed markedly reduced invasive and migratory abilities. ATP5E inhibition significantly reduced the incidence of distant metastasis in a mouse xenograft model. Mechanistically, increased ATP5E expression resulted in a prominent reduction in E-cadherin and an increase in Snail expression. Our data also showed that an elevated ATP5E level in metastatic colon cancer samples was significantly associated with the AMPK-AKT-hypoxia-inducible factor-1α (HIF1α) signaling axis; silencing ATP5E led to the degradation of HIF1α under hypoxia through AMPK-AKT signaling. Our findings suggest that elevated ATP5E expression could serve as a marker of distant metastasis and a poor prognosis in colon cancer, and ATP5E functions via modulating AMPK-AKT-HIF1α signaling.

19.
Bioorg Chem ; 89: 103014, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170642

RESUMO

Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the pyrone ring. Coumarins with electron withdrawing moieties - cyano and fluoro at C3 - were considerably less active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking. A concentration-dependent alteration in migration on neutral gels caused by nicking was observed.


Assuntos
Cumarínicos/farmacologia , Queratinócitos/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade
20.
Chem Res Toxicol ; 32(6): 1123-1133, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30964658

RESUMO

Nitrogen mustard, mechlorethamine (bis(2-chloroethyl)methylamine; HN2), and sulfur mustard are potent vesicants that modify and disrupt cellular macromolecules including DNA leading to cytotoxicity and tissue injury. In many cell types, HN2 upregulates DNA damage signaling pathways including ataxia telangiectasia mutated (ATM), ataxia telangiectasia mutated- and Rad3-related (ATR) as well as DNA-dependent protein kinase (DNA-PK). In the present studies, we investigated crosstalk between the HN2-induced DNA damage response and cell cycle progression using human A549 lung epithelial cells. HN2 (1-20 µM; 24 h) caused a concentration-dependent arrest of cells in the S and G2/M phases of the cell cycle. This was associated with inhibition of DNA synthesis, as measured by incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into S phase cells. Cell cycle arrest was correlated with activation of DNA damage and cell cycle checkpoint signaling. Thus, HN2 treatment resulted in time- and concentration-dependent increases in expression of phosphorylated ATM (Ser1981), Chk2 (Thr68), H2AX (Ser139), and p53 (Ser15). Activation of DNA damage signaling was most pronounced in S-phase cells followed by G2/M-phase cells. HN2-induced cell cycle arrest was suppressed by the ATM and DNA-PK inhibitors, KU55933 and NU7441, respectively, and to a lesser extent by VE821, an ATR inhibitor. This was correlated with abrogation of DNA damage checkpoints signaling. These data indicate that activation of ATM, ATR, and DNA-PK signaling pathways by HN2 are important in the mechanism of vesicant-induced cell cycle arrest and cytotoxicity. Drugs that inhibit activation of DNA damage signaling may be effective countermeasures for vesicant-induced tissue injury.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Substâncias para a Guerra Química/farmacologia , Dano ao DNA , Mecloretamina/farmacologia , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Substâncias para a Guerra Química/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mecloretamina/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...