Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643915

RESUMO

Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.


Assuntos
Alcaloides de Berberina , Simulação de Acoplamento Molecular , Muramidase , Muramidase/química , Muramidase/metabolismo , Alcaloides de Berberina/farmacologia , Alcaloides de Berberina/química , Ligação Proteica , Espectrometria de Fluorescência , Animais , Amiloide/química , Amiloide/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Concentração de Íons de Hidrogênio , Galinhas
2.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
3.
Int J Biol Macromol ; 259(Pt 1): 129143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176484

RESUMO

In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.


Assuntos
Corantes de Alimentos , Índigo Carmim , Humanos , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Espectrometria de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência , Dicroísmo Circular , Termodinâmica , Calorimetria , Ligação Proteica , Sítios de Ligação
4.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546892

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

5.
Nat Commun ; 14(1): 3059, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244916

RESUMO

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/uso terapêutico , Mutação , Resistência a Medicamentos/genética , Proteínas de Protozoários/metabolismo
6.
ChemMedChem ; 17(22): e202200393, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36129427

RESUMO

New antimalarial treatments with novel mechanism of action are needed to tackle Plasmodium falciparum infections that are resistant to first-line therapeutics. Here we report the exploration of MMV692140 (2) from the Pathogen Box, a collection of 400 compounds that was made available by Medicines for Malaria Venture (MMV) in 2015. Compound 2 was profiled in in vitro models of malaria and was found to be active against multiple life-cycle stages of Plasmodium parasites. The mode of resistance, and putatively its mode of action, was identified as Plasmodium falciparum translation elongation factor 2 (PfeEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA. The compound maintains activity against a series of drug-resistant parasite strains. The structural motif of the tetrahydroquinoline (2) was explored in a chemistry program with its structure-activity relationships examined, resulting in the identification of an analog with 30-fold improvement of antimalarial asexual blood stage potency.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA