Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
2.
Carbohydr Polym ; 334: 122009, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553200

RESUMO

Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.


Assuntos
Colo , Sistemas de Liberação de Medicamentos , Colo/metabolismo , Gomas Vegetais/química , Galactanos/química , Mananas/química , Portadores de Fármacos/metabolismo
3.
J Phys Condens Matter ; 36(16)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194716

RESUMO

We undertake a comprehensive first-principles investigation into the factors influencing the optoelectronic efficiencies of PIQIIIR2VIchalcopyrite semiconductors. The structural attributes, electronic properties, and phase stabilities are explored using various meta-GGA exchange-correlation (XC) functionals within the density functional framework. In particular, we assess the relative performance of these XC functionals in obtaining estimates of various relevant parameters. The structural parameteruin chalcopyrite semiconductors is a noteworthy aspect, as it is intrinsically tied to the extent of orbital hybridization between distinct atoms and thereby strongly influences the electronic properties. In general, the application of widely used GGA-PBE XC functional to these chalcopyrites results in unreliable predictions of band gaps and 'u' parameter due to delocalization errors that in turn arise due to the inclusion ofdandfcore electrons. While hybrid functionals offer remarkable accuracy through state-of-the-art methods, their main drawback lies in their computational expense and resource demands. Our findings strongly suggest that in comparison to GGA-PBE, the meta-GGA XC functionals perform quite well and provide results that closely align with experimental values. In particular, ther2SCAN andrMGGAC XC functionals are preferable and superior for investigating chalcopyrites and other solid-state systems. This preference is rooted in their excellent performance and substantially reduced computational costs compared to hybrid functionals.

4.
Int J Biol Macromol ; 258(Pt 1): 128824, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103665

RESUMO

Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 µg/mL) compared to G-403 (EC50 = 15.6 µg/mL) and G-401 (EC50 = 17.9 µg/mL). This most active sulfated galactan possessed a linear chain containing ß-(1 â†’ 3)- and α-(1 â†’ 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.


Assuntos
Herpesvirus Humano 1 , Rodófitas , Galactanos/química , Rodófitas/química , Sulfatos/farmacologia , Antivirais/farmacologia
5.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149733

RESUMO

The adiabatic connection interaction strength interpolation (ISI)-like method provides a high-level expression for the correlation energy, being, in principle, exact not only in the weak-interaction limit, where it recovers the second-order Görling-Levy perturbation term, but also in the strong-interaction limit that is described by the strictly correlated electron approach. In this work, we construct a genISI functional made accurate for the uniform electron gas, a solid-state physics paradigm that is a very difficult test for ISI-like correlation functionals. We assess the genISI functional for various jellium spheres with the number of electrons Z ≤ 912 and for the non-relativistic noble atoms with Z ≤ 290. For the jellium clusters, the genISI is remarkably accurate, while for the noble atoms, it shows a good performance, similar to other ISI-like methods. Then, the genISI functional can open the path using the ISI-like method in solid-state calculations.

7.
J Phys Chem A ; 127(41): 8685-8697, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37811903

RESUMO

The incorporation of a strong-interaction regime within the approximate semilocal exchange-correlation functionals still remains a very challenging task for density functional theory. One of the promising attempts in this direction is the recently proposed adiabatic connection semilocal correlation (ACSC) approach [Constantin, L. A.; Phys. Rev. B 2019, 99, 085117] allowing one to construct the correlation energy functionals by interpolation of the high and low-density limits for the given semilocal approximation. The current study extends the ACSC method to the meta-generalized gradient approximations (meta-GGA) level of theory, providing some new insights in this context. As an example, we construct the correlation energy functional on the basis of the high- and low-density limits of the Tao-Perdew-Staroverov-Scuseria (TPSS) functional. Arose in this way, the TPSS-ACSC functional is one-electron self-interaction free and accurate for the strictly correlated and quasi-two-dimensional regimes. Based on simple examples, we show the advantages and disadvantages of ACSC semilocal functionals and provide some new guidelines for future developments in this context.

8.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37721324

RESUMO

We develop a realistic density functional approximation for the local gap, which is based on a semilocal indicator that shows good screening properties. The local band model has remarkable density scaling behaviors and works properly for the helium isoelectronic series for the atoms of the Periodic Table, as well as for the non-relativistic noble atom series (up to 2022 e-). Due to these desirable properties, we implement the local gap model in the jellium-with-gap correlation energy, developing the local-density-approximation-with-gap correlation functional (named LDAg) that correctly gives correlation energies of atoms comparable with the LDA ones but shows an improvement for ionization potential of atoms and molecules. Thus, LDAg seems to be an interesting and useful tool in density functional theory.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123129, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473665

RESUMO

Recognition of metal ions in aqueous media has direct impact for designing new supramolecular hosts for targeting biochemical pathways. In the present work we have studied the binding behavior of three simple chalcones with variation in number of phenolic OH groups. These chalcones showed very good binding capabilities towards metal ions in CH3OH-H2O (1:1, v/v) solvent system. The receptors R1 has interacted with all metal ions, which are used in the present study through 2:1 mode of complexation whereas R2 have showed equilibrium between the complexes of 2:1 and 1:1 with few exceptions. The highest association constants (K21) of R1 and R2 for Fe2+ is observed as 1.1 × 109 (4) M-1 and 2.3 × 108 (7) M-1 respectively by fluorescence titration method. But R3, which is lack of any phenolic OH group, binds all the metal ions through the formation of 1:1 mode of complex formation by exploiting the only one donor site as carbonyl 'O' atom resulting lower association constant for all the metal ions. So intermolecular hydrogen bonding as well as π- π stacking interaction forced the receptors R1 and R2 to arrange in a pseudo cleft orientation for the recognition of metal ions in 2:1 mode of complex formation. The binding behaviour of the receptors with few alkali metal ions (Na+, K+ and Cs+) and alkaline-earth metal ions (Mg2+, Ca2+ and Ba2+) are also studied and observed weak binding nature in compared with the transition metal ions.

10.
Socioecon Plann Sci ; 88: 101614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37346799

RESUMO

The breakout of the pandemic COVID-19 has affected numerous countries and territories worldwide. As COVID-19 specific medicines yet to be invented, at present the treatment is case specific, hence identification and evaluation of different prevalent treatment options based on various criteria and attributes are very important not only from the point of view of present pandemic but also for futuristic pandemic preparedness. The present study focuses on identifying, evaluation and ranking of treatment options using Multi Criteria Decision Making (MCDM). In this regard, the existing literature, doctors and scientist were interviewed to know the current treatment options in vogue and the scale of their importance with respect to the criteria. The criteria taken are side effect, regime cost, treatment duration, plasma stability, plasma turnover, time of suppression, ease of application, drug-drug interaction, compliance, fever, pneumonia, intensive care, organ failure, macrophage activation syndrome, hemophagocytic syndrome, pregnancy, kidney problem, age. This study extended Hesitant Fuzzy Set (HFS) to Generalized Hesitant Fuzzy Sets (GHFS). Generalized Hesitant Pentagonal Fuzzy Number (GHPFN) is developed. The properties of GHPFN are demonstrated. Two types of GHPFN has been described. The GHPFN (2nd type) along with MCDM tool Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) has been applied to rank the treatment options. The result of the study ranked 'Hydroxychloroquine' as the first alternative followed by, 'Plasma Exchange', 'Tocilizumab', 'Remdesivir' and 'Favipravir'. To check the robustness and steadiness of the proposed methodology, comparative analysis and sensitivity analysis has been conducted.

11.
J Chem Theory Comput ; 19(13): 4100-4113, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37312236

RESUMO

Methods for computing X-ray absorption spectra based on a constrained core hole (possibly containing a fractional electron) are examined. These methods are based on Slater's transition concept and its generalizations, wherein core-to-valence excitation energies are determined using Kohn-Sham orbital energies. Methods examined here avoid promoting electrons beyond the lowest unoccupied molecular orbital, facilitating robust convergence. Variants of these ideas are systematically tested, revealing a best-case accuracy of 0.3-0.4 eV (with respect to experiment) for K-edge transition energies. Absolute errors are much larger for higher-lying near-edge transitions but can be reduced below 1 eV by introducing an empirical shift based on a charge-neutral transition-potential method, in conjunction with functionals such as SCAN, SCAN0, or B3LYP. This procedure affords an entire excitation spectrum from a single fractional-electron calculation, at the cost of ground-state density functional theory and without the need for state-by-state calculations. This shifted transition-potential approach may be especially useful for simulating transient spectroscopies or in complex systems where excited-state Kohn-Sham calculations are challenging.

12.
ACS Biomater Sci Eng ; 9(5): 2181-2202, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036371

RESUMO

Over the past few decades, chitosan (CS) has gained the attention of researchers investigating newer biomaterial-based carriers for drugs in pharmaceutical and biomedical research. Combined with its nontoxic behavior, biodegradability, and biocompatibility, chitosan has found widespread applications in the fields of drug delivery, tissue engineering, and cosmetics. As a novel drug carrier, chitosan is regarded as one of the promising biomaterials in the pharmaceutical industry. The extensive use of this cationic biopolysaccharide in the delivery of therapeutic agents has brought a few limitations of chitosan into the limelight. Various chemical modifications of chitosan can minimize these limitations and improve the efficacy of chitosan as a drug carrier. The effectiveness of several chemically modified chitosan derivatives, including trimethyl chitosan, thiolated chitosan, PEGylated chitosan, and other chitosan derivatives, has been investigated by many researchers for the controlled and target specific delivery of therapeutics. The chemically modified chitosan derivatives exhibited greater importance in the current scenario on drug delivery due to their solubility in wide range of media along with their interaction with pharmaceutically active ingredients. Chitosan derivatives have also attracted attention in several biomedical fields, including wound healing, hyperthermia therapy, tissue engineering, and bioadhesives. The present review narrates the sources and common physicochemical properties of chitosan, including several important synthetic modifications to obtain chemically modified chitosans and their applications in target-specific drug delivery, along with several biomedical applications.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis , Portadores de Fármacos , Engenharia Tecidual
13.
J Chem Phys ; 158(9): 094111, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889976

RESUMO

Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a "full core hole" (or "ΔSCF") approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater's transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3-0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn-Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122107, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410175

RESUMO

The design of fluorescence sensor for selective detection of Fe2+ is very important as it is part of different biochemical redox system related to a number of diseases. In many occasion sensors are unable to distinguish Fe2+ from Fe3+ ions. In the present work, we report simple chalcone type sensors for sensing Fe2+ ions in semi aqueous system. The receptors R1 and R2 have showed excellent sensing properties at pH 7 in CH3OH-H2O (1:1, v/v) solvent system. The fluorescence emission intensity of the complexes between hosts and Fe2+ is least affected by the other competitive metal ions leading to the formation of very tight host-guest complex. The LOD for the R1 and R2 for Fe2+ are 1.91 µM and 3.54 µM respectively, which is quite low in compared to the many other reported sensors. The practical applicability of these sensors is determined by the detection of Fe2+ in real water samples. So chalcones would be cost effective PET inhibited fluorescence sensor for Fe2+.


Assuntos
Chalcona , Chalconas , Fluorescência , Solventes
15.
J Chem Phys ; 157(12): 124108, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182416

RESUMO

Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can often be quite challenging. Although density functional theory has been reasonably successful to carry out such calculations, efficient, accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk bandgaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r2SCAN (two times revised strongly constrained and appropriately normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and local modified Becke-Johnson exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the density functional theory framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.

16.
J Chem Phys ; 157(2): 024102, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840391

RESUMO

The semilocal form of an exchange hole is highly useful in developing non-local range-separated hybrid density functionals for finite and extended systems. The way to construct the conventional exact exchange hole model is based on either the Taylor series expansion or the reverse engineering technique from the corresponding exchange energy functional. Although the latter technique is quite popular in the context of generalized gradient approximation (GGA) functionals, the same for the meta-GGA functionals is not so much explored. Thus, in this study, we propose a reverse-engineered semilocal exchange hole of a meta-GGA functional, which only depends on the meta-GGA ingredient α (also known as the Pauli kinetic energy enhancement factor). The model is subsequently used to design the short-range-separated meta-GGA hybrid density functional. We show that the present method can be successfully applied for several challenging problems in the context of solids, especially for which the GGA based hybrid fails drastically. This assessment proves that the present functional is quite useful for materials sciences. Finally, we also use this method for several molecular test cases, where the results are also as comparative as its base semilocal functional.

17.
Carbohydr Polym ; 289: 119299, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483827

RESUMO

Plant polysaccharides represent a natural source material characterized by high ubiquity, abundance and biological activities that can be utilised as organic matter in numerous manufacturing processes including pharmaceutical. The goal-oriented modification of polysaccharides by chemical reactions brings about a substantial refinement in their molecular features and biological activity. An improved understanding of the intrinsic molecular features of plant polysaccharides, as well as the structure-activity relationship eventually caused by chemical alterations, may be fundamental for the development of technologies supporting their biomedical oriented exploitation. Herein, we attempt to provide a broader view on these topics and to illustrate methodologies of chemical modification. These are intended to enhance the functionality of plant polysaccharides, such as their modification-induced biological activities, finally making the products available for translational purposes.


Assuntos
Plantas , Polissacarídeos , Plantas/química , Polissacarídeos/química , Polissacarídeos/farmacologia
18.
J Phys Condens Matter ; 34(7)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34768248

RESUMO

The correct treatment ofdelectrons is of prime importance in order to predict the electronic properties of the prototype chalcopyrite semiconductors. The effect ofdstates is linked with the anion displacement parameteru, which in turn influences the bandgap of these systems. Semilocal exchange-correlation functionals which yield good structural properties of semiconductors and insulators often fail to predict reasonableubecause of the underestimation of the bandgaps arising from the strong interplay betweendelectrons. In the present study, we show that the meta-generalized gradient approximation (meta-GGA) obtained from the cuspless hydrogen density (MGGAC) (2019Phys. Rev.B 100 155140) performs in an improved manner in apprehending the key features of the electronic properties of chalcopyrites, and its bandgaps are comparative to that obtained using state-of-art hybrid methods. Moreover, the present assessment also shows the importance of the Pauli kinetic energy enhancement factor,α= (τ-τW)/τunifin describing thedelectrons in chalcopyrites. The present study strongly suggests that the MGGAC functional within semilocal approximations can be a better and preferred choice to study the chalcopyrites and other solid-state systems due to its superior performance and significantly low computational cost.

19.
J Chem Phys ; 155(10): 104103, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525814

RESUMO

The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.

20.
J Chem Phys ; 155(11): 114102, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551544

RESUMO

In the density functional theory, dispersion corrected semilocal approximations are often used to benchmark weekly interacting finite and extended systems. Here, the focus is on providing a broad overview of the performance of D3 dispersion corrected revised Tao-Mo (revTM) semilocal functionals [A. Patra et al., J. Chem. Phys. 153, 084 117 (2020)] for thermochemistry and kinetics of molecules, molecular crystals, ice polymorphs, metal-organic systems, atom/molecular adsorption on solids, water interacting with nano-materials, binding energies of layered materials, and properties of weekly and strongly bonded solids. We show that the most suitable "optimized power" function for the revTM functional needs a modification to make it suitable for properties related to the diverse nature of finite and extended systems. The present work is an extension of the previously proposed revTM+D3 method with the motivation to design and benchmark the dispersion corrected cost-effective method based on this semilocal approximation. We show that the revised revTM+D3 functional provides various general purpose molecular and solid properties with the closest to experimental findings than its predecessor. The present assessment and benchmarking can be practically useful for performing cost-effective method based simulations of various molecular and solid-state properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...