Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 323: 121232, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775135

RESUMO

PM10-associated potential toxic elements (PTEs) can enter the respiratory system and cause health problems. In the current study, the health risk indices caused by PM10 inhalation by adults, children, and infants in 158 European cities between 2013 and 2019 were studied to determine if Europeans were adversely affected by carcinogenic and non-carcinogenic factors or not. The Mann-Kendall trend test examined PM10's increasing or decreasing trend. Random Forest analysis was also used to analyse meteorological factors affecting PM10 in Europe. Hazard quotient and cancer risk were estimated using PM10-associated PTEs. Our results showed a decline in continental PM10 concentrations. The correlation between PM10 concentrations and temperature (-0.40), PBLH (-0.39), and precipitation were statistically strong (-0.21). The estimated Pearson correlation coefficients showed a statistically strong positive correlation between As & Pb, As & Cd, and Cd & Pb during 2013-2019, indicating a similar origin. PTEs with hazard quotients below one, regardless of subpopulation type, posed no noncancerous risk to Europeans. The hazard quotient values positively correlated with time, possibly due to elevated PTE levels. In our study on carcinogen pollution in Europe between 2013 and 2019, we found unacceptable levels of As, Cd, Ni, and Pb among adults, children, and infants. Carcinogenic risk rates were highest for children, followed by infants, adult women, and adult men. Therefore, besides monitoring and mitigating PM concentrations, effective control of PM sources is also needed.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Criança , Adulto , Lactente , Masculino , Humanos , Feminino , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cádmio/análise , Chumbo/análise , Medição de Risco/métodos , Carcinógenos/análise , Carcinogênese , Metais Pesados/análise
2.
Environ Sci Pollut Res Int ; 29(24): 36392-36411, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060047

RESUMO

This study assesses a plausible correlation between a dust intrusion episode and a daily increase in COVID-19 cases. A surge in COVID-19 cases was observed a few days after a Middle East Dust (MED) event that peaked on 25th April 2020 in southwest Iran. To investigate potential causal factors for the spike in number of cases, cross-correlations between daily combined aerosol optical depths (AODs) and confirmed cases were computed for Khuzestan, Iran. Additionally, atmospheric stability data time series were assessed by covering before, during, and after dust intrusion, producing four statistically clustered distinct city groups. Groups 1 and 2 had different peak lag times of 10 and 4-5 days, respectively. Since there were statistically significant associations between AOD levels and confirmed cases in both groups, dust incursion may have increased population susceptibility to COVID-19 disease. Group 3 was utilized as a control group with neither a significant level of dust incursion during the episodic period nor any significant associations. Group 4 cities, which experienced high dust incursion levels, showed no significant correlation with confirmed case count increases. Random Forest Analysis assessed the influence of wind speed and AOD, showing relative importance of 0.31 and 0.23 on the daily increase percent of confirmed cases, respectively. This study may serve as a reference for better understanding and predicting factors affecting COVID-19 transmission and diffusion routes, focusing on the role of MED intrusions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Cidades/epidemiologia , Poeira/análise , Monitoramento Ambiental , Humanos , Irã (Geográfico)/epidemiologia
3.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32133744

RESUMO

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Assuntos
Lagos , Fitoplâncton , Mudança Climática , Ecossistema , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA