Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 91(3): 602-14, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27497222

RESUMO

Normal breathing in rodents requires activity of glutamatergic Dbx1-derived (Dbx1(+)) preBötzinger Complex (preBötC) neurons expressing somatostatin (SST). We combined in vivo optogenetic and pharmacological perturbations to elucidate the functional roles of these neurons in breathing. In transgenic adult mice expressing channelrhodopsin (ChR2) in Dbx1(+) neurons, photoresponsive preBötC neurons had preinspiratory or inspiratory firing patterns associated with excitatory effects on burst timing and pattern. In transgenic adult mice expressing ChR2 in SST(+) neurons, photoresponsive preBötC neurons had inspiratory or postinspiratory firing patterns associated with excitatory responses on pattern or inhibitory responses that were largely eliminated by blocking synaptic inhibition within preBötC or by local viral infection limiting ChR2 expression to preBötC SST(+) neurons. We conclude that: (1) preinspiratory preBötC Dbx1(+) neurons are rhythmogenic, (2) inspiratory preBötC Dbx1(+) and SST(+) neurons primarily act to pattern respiratory motor output, and (3) SST(+)-neuron-mediated pathways and postsynaptic inhibition within preBötC modulate breathing pattern.


Assuntos
Interneurônios/fisiologia , Bulbo/citologia , Bulbo/fisiologia , Vias Neurais , Animais , Proteínas de Homeodomínio/biossíntese , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Respiração/genética , Rodopsina/biossíntese , Somatostatina/biossíntese
2.
Nature ; 530(7590): 293-297, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26855425

RESUMO

Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Neurocinina B/análogos & derivados , Neurônios/fisiologia , Receptores da Bombesina/metabolismo , Respiração , Transdução de Sinais/fisiologia , Animais , Bombesina/farmacologia , Emoções/fisiologia , Feminino , Peptídeo Liberador de Gastrina/deficiência , Peptídeo Liberador de Gastrina/genética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina B/deficiência , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Centro Respiratório/citologia , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Transdução de Sinais/efeitos dos fármacos
3.
J Neurophysiol ; 113(7): 2871-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25717158

RESUMO

Each half of the medulla contains respiratory neurons that constitute two generators that control respiratory rhythm. One generator consists of the inspiratory neurons in the pre-Bötzinger complex (preBötC); the other, the pre-inspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG), rostral to the preBötC. We investigated the contribution of the commissural fibers, connecting the respiratory rhythm generators located on the opposite side of the medulla to the generation of respiratory activity in brain stem-spinal cord preparation from 0- to 1-day-old rats. Pre-I neuron activity and the facial nerve and/or first lumbar (L1) root activity were recorded as indicators of the pFRG-driven rhythm. Fourth cervical ventral root (C4) root and/or hypoglossal (XII) nerve activity were recorded as indicators of preBötC-driven inspiratory activity. We found that a midline section that interrupted crossed fibers rostral to the obex irreversibly eliminated C4 and XII root activity, whereas the Pre-I neurons, facial nerve, and L1 roots remained rhythmically active. The facial and contralateral L1 nerve activities were synchronous, whereas right and left facial (and right and left L1) nerves lost synchrony. Optical recordings demonstrated that pFRG-driven burst activity was preserved after a midline section, whereas the preBötC neurons were no longer rhythmic. We conclude that in newborn rats, crossed excitatory interactions (via commissural fibers) are necessary for the generation of inspiratory bursts but not for the generation of rhythmic Pre-I neuron activity.


Assuntos
Relógios Biológicos/fisiologia , Geradores de Padrão Central/fisiologia , Inalação/fisiologia , Bulbo/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Vias Neurais/fisiologia , Ratos
4.
J Neurosci ; 33(22): 9235-45, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719793

RESUMO

In the mammalian respiratory central pattern generator, the preBötzinger complex (preBötC) produces rhythmic bursts that drive inspiratory motor output. Cellular mechanisms initiated by each burst are hypothesized to be necessary to determine the timing of the subsequent burst, playing a critical role in rhythmogenesis. To explore mechanisms relating inspiratory burst generation to rhythmogenesis, we compared preBötC and hypoglossal (XII) nerve motor activity in medullary slices from neonatal mice in conditions where periods between successive inspiratory XII bursts were highly variable and distributed multimodally. This pattern resulted from rhythmic preBötC neural population activity that consisted of bursts, concurrent with XII bursts, intermingled with significantly smaller "burstlets". Burstlets occurred at regular intervals during significantly longer XII interburst intervals, at times when a XII burst was expected. When a preBötC burst occurred, its high amplitude inspiratory component (I-burst) was preceded by a preinspiratory component that closely resembled the rising phase of burstlets. Cadmium (8 µM) eliminated preBötC and XII bursts, but rhythmic preBötC burstlets persisted. Burstlets and preinspiratory activity were observed in ~90% of preBötC neurons that were active during I-bursts. When preBötC excitability was raised significantly, burstlets could leak through to motor output in medullary slices and in vivo in adult anesthetized rats. Thus, rhythmic bursting, a fundamental mode of nervous system activity and an essential element of breathing, can be deconstructed into a rhythmogenic process producing low amplitude burstlets and preinspiratory activity that determine timing, and a pattern-generating process producing suprathreshold I-bursts essential for motor output.


Assuntos
Geradores de Padrão Central/fisiologia , Centro Respiratório/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Cádmio/farmacologia , Interpretação Estatística de Dados , Feminino , Antagonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Técnicas de Patch-Clamp , Potássio/farmacologia , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos
5.
J Neurosci ; 33(13): 5454-65, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536061

RESUMO

Postsynaptic inhibition is a key element of neural circuits underlying behavior, with 20-50% of all mammalian (nongranule) neurons considered inhibitory. For rhythmic movements in mammals, e.g., walking, swimming, suckling, chewing, and breathing, inhibition is often hypothesized to play an essential rhythmogenic role. Here we study the role of fast synaptic inhibitory neurotransmission in the generation of breathing pattern by blocking GABA(A) and glycine receptors in the preBötzinger complex (preBötC), a site essential for generation of normal breathing pattern, and in the neighboring Bötzinger complex (BötC). The breathing rhythm continued following this blockade, but the lung inflation-induced Breuer-Hering inspiratory inhibitory reflex was suppressed. The antagonists were efficacious, as this blockade abolished the profound effects of the exogenously applied GABA(A) receptor agonist muscimol or glycine, either of which under control conditions stopped breathing in vagus-intact or vagotomized, anesthetized, spontaneously breathing adult rats. In vagotomized rats, GABA(A)ergic and glycinergic antagonists had little, if any, effect on rhythm. The effect in vagus-intact rats was to slow the rhythm to a pace equivalent to that seen after suppression of the aforementioned Breuer-Hering inflation reflex. We conclude that postsynaptic inhibition within the preBötC and BötC is not essential for generation of normal respiratory rhythm in intact mammals. We suggest the primary role of inhibition is in shaping the pattern of respiratory motor output, assuring its stability, and in mediating reflex or volitional apnea, but not in the generation of rhythm per se.


Assuntos
Inibição Neural/fisiologia , Respiração , Centro Respiratório/citologia , Centro Respiratório/fisiologia , Animais , Bicuculina/farmacologia , Colina O-Acetiltransferase/metabolismo , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Eletromiografia , Lateralidade Funcional , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Glicina/farmacologia , Glicinérgicos/farmacologia , Indóis , Nervos Laríngeos/fisiologia , Masculino , Microinjeções , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/lesões , Estricnina/farmacologia , Vagotomia , Nervo Vago/fisiologia
6.
J Comp Neurol ; 520(3): 606-19, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21858819

RESUMO

Identification of two markers of neurons in the pre-Bötzinger complex (pre-BötC), the neurokinin 1 receptor (NK1R) and somatostatin (Sst) peptide, has been of great utility in understanding the essential role of the pre-BötC in breathing. Recently, the transcription factor dbx1 was identified as a critical, but transient, determinant of glutamatergic pre-BötC neurons. Here, to identify additional markers, we constructed and screened a single-cell subtractive cDNA library from pre-BötC inspiratory neurons. We identified the glycoprotein reelin as a potentially useful marker, because it is expressed in distinct populations of pre-BötC and inspiratory bulbospinal ventral respiratory group (ibsVRG) neurons. Reelin ibsVRG neurons were larger (27.1 ± 3.8 µm in diameter) and located more caudally (>12.8 mm caudal to Bregma) than reelin pre-BötC neurons (15.5 ± 2.4 µm in diameter, <12.8 mm rostral to Bregma). Pre-BötC reelin neurons coexpress NK1R and Sst. Reelin neurons were also found in the parahypoglossal and dorsal parafacial regions, pontine respiratory group, and ventromedial medulla. Reelin-deficient (Reeler) mice exhibited impaired respones to hypoxia compared with littermate controls. We suggest that reelin is a useful molecular marker for pre-BötC neurons in adult rodents and may play a functional role in pre-BötC microcircuits.


Assuntos
Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Centro Respiratório/citologia , Centro Respiratório/metabolismo , Serina Endopeptidases/biossíntese , Fatores Etários , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/genética , Cães , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Ratos , Proteína Reelina , Serina Endopeptidases/genética
7.
J Neurosci ; 31(8): 2895-905, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21414911

RESUMO

Data from perinatal and juvenile rodents support our hypothesis that the preBötzinger complex generates inspiratory rhythm and the retrotrapezoid nucleus-parafacial respiratory group (RTN/pFRG) generates active expiration (AE). Although the role of the RTN/pFRG in adulthood is disputed, we hypothesized that its rhythmogenicity persists but is typically silenced by synaptic inhibition. We show in adult anesthetized rats that local pharmacological disinhibition or optogenetic excitation of the RTN/pFRG can generate AE and transforms previously silent RTN/pFRG neurons into rhythmically active cells whose firing is correlated with late-phase active expiration. Brief excitatory stimuli also reset the respiratory rhythm, indicating strong coupling of AE to inspiration. The AE network location in adult rats overlaps with the perinatal pFRG and appears lateral to the chemosensitive region of adult RTN. We suggest that (1) the RTN/pFRG contains a conditional oscillator that generates AE, and (2) at rest and in anesthesia, synaptic inhibition of RTN/pFRG suppresses AE.


Assuntos
Expiração/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Centro Respiratório/fisiologia , Fenômenos Fisiológicos Respiratórios , Animais , Expiração/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Centro Respiratório/efeitos dos fármacos
8.
J Comp Neurol ; 518(10): 1862-78, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20235095

RESUMO

The preBötzinger Complex (preBötC) contains neural microcircuitry essential for normal respiratory rhythm generation in rodents. A subpopulation of preBötC neurons expresses somatostatin, a neuropeptide with a modulatory action on breathing. Acute silencing of a subpopulation of preBötC neurons transfected by a virus driving protein expression under the somatostatin promoter results in persistent apnea in awake adult rats. Given the profound effect of silencing these neurons, their projections are of interest. We used an adeno-associated virus to overexpress enhanced green fluorescent protein driven by the somatostatin promoter in preBötC neurons to label their axons and terminal fields. These neurons send brainstem projections to: 1) contralateral preBötC; 2) ipsi- and contralateral Bötzinger Complex; 3) ventral respiratory column caudal to preBötC; 4) parafacial respiratory group/retrotrapezoid nucleus; 5) parahypoglossal nucleus/nucleus of the solitary tract; 6) parabrachial/Kölliker-Fuse nuclei; and 7) periaqueductal gray. We did not find major projections to either cerebellum or spinal cord. We conclude that there are widespread projections from preBötC somatostatin-expressing neurons specifically targeted to brainstem regions implicated in control of breathing, and provide a network basis for the profound effects and the essential role of the preBötC in breathing.


Assuntos
Vias Neurais/anatomia & histologia , Neurônios/citologia , Centro Respiratório/citologia , Animais , Dependovirus/genética , Dependovirus/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Centro Respiratório/fisiologia , Somatostatina/genética
10.
Nat Neurosci ; 11(5): 538-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391943

RESUMO

Delineating neurons that underlie complex behaviors is of fundamental interest. Using adeno-associated virus 2, we expressed the Drosophila allatostatin receptor in somatostatin (Sst)-expressing neurons in the preBötzinger Complex (preBötC). Rapid silencing of these neurons in awake rats induced a persistent apnea without any respiratory movements to rescue their breathing. We hypothesize that breathing requires preBötC Sst neurons and that their sudden depression can lead to serious, even fatal, respiratory failure.


Assuntos
Apneia/fisiopatologia , Proteínas de Drosophila/genética , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Centro Respiratório/metabolismo , Somatostatina/metabolismo , Animais , Apneia/induzido quimicamente , Apneia/genética , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Biomarcadores/metabolismo , Dependovirus/genética , Drosophila , Proteínas de Drosophila/biossíntese , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Periodicidade , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Receptores da Neurocinina-1/metabolismo , Receptores de Neuropeptídeos/biossíntese , Centro Respiratório/citologia , Centro Respiratório/efeitos dos fármacos , Fenômenos Fisiológicos Respiratórios , Transfecção/métodos , Vigília/fisiologia
14.
J Physiol ; 570(Pt 2): 407-20, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16293645

RESUMO

Inspiration and active expiration are commonly viewed as antagonistic phases of a unitary oscillator that generates respiratory rhythm. This view conflicts with observations we report here in juvenile rats, where by administration of fentanyl, a selective mu-opiate agonist, and induction of lung reflexes, we separately manipulated the frequency of inspirations and expirations. Moreover, completely transecting the brainstem at the caudal end of the facial nucleus abolished active expirations, while rhythmic inspirations continued. We hypothesize that inspiration and expiration are generated by coupled, anatomically separate rhythm generators, one generating active expiration located close to the facial nucleus in the region of the retrotrapezoid nucleus/parafacial respiratory group, the other generating inspiration located more caudally in the preBötzinger Complex.


Assuntos
Relógios Biológicos/fisiologia , Expiração/fisiologia , Inalação/fisiologia , Pulmão/fisiologia , Mesencéfalo/fisiologia , Envelhecimento , Animais , Estado de Descerebração , Expiração/efeitos dos fármacos , Feminino , Fentanila/farmacologia , Inalação/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Mesencéfalo/cirurgia , Neurônios Motores/fisiologia , Naloxona/farmacologia , Periodicidade , Ponte/fisiologia , Ponte/cirurgia , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Músculos Respiratórios/fisiologia , Vagotomia , Nervo Vago/fisiologia
15.
Nat Neurosci ; 8(9): 1142-4, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16116455

RESUMO

Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations.


Assuntos
Imunotoxinas/toxicidade , Neurônios/patologia , Centro Respiratório/patologia , Síndromes da Apneia do Sono/patologia , Substância P/análogos & derivados , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia/métodos , Eletromiografia/métodos , Imuno-Histoquímica/métodos , Neurônios/fisiologia , Polissonografia/métodos , Ratos , Receptores da Neurocinina-1/metabolismo , Centro Respiratório/lesões , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Síndromes da Apneia do Sono/induzido quimicamente , Síndromes da Apneia do Sono/fisiopatologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Substância P/toxicidade , Fatores de Tempo , Vigília/efeitos dos fármacos , Vigília/fisiologia
17.
J Physiol ; 557(Pt 1): 13-8, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15047768

RESUMO

The aim of this study was to determine if episodic hypoxia evokes persistent increases of genioglossus muscle (GG) activity, termed long-term facilitation (LTF), in neonatal rats in vivo. Experiments were performed on anaesthetized, spontaneously breathing, intubated neonatal rats (postnatal days (P) 3-7), divided into three groups. The first group (n= 8) was subjected to three 5-min periods of hypoxia (5% O(2)-95% N(2)) alternating with 5 min periods of room air. The second group (n= 8) was exposed to 15 min of continuous hypoxia. The third (n= 4) group was not exposed to hypoxia and served as a control. GG EMG activity and airflow were recorded before, during and for 60 min after episodic and continuous hypoxic exposure. During hypoxia, GG EMG burst amplitude and tidal volume (V(T)) significantly increased compared to baseline levels (episodic protocol: mean +/-S.E.M; 324 +/- 59% of control and 0.13 +/- 0.007 versus 0.09 +/- 0.005 ml, respectively; continuous protocol: 259 +/- 30% of control and 0.16 +/- 0.005 versus 0.09 +/- 0.007 ml, respectively; P < 0.05). After the episodic protocol, GG EMG burst amplitude transiently returned to baseline; over the next 60 min, burst amplitude progressively increased to levels significantly greater than baseline (238 +/- 40% at 60 min; P < 0.05), without any significant increase in V(T) and respiratory frequency (P> 0.05). After the continuous protocol, there was no lasting increase in GG EMG burst amplitude. We conclude that LTF of upper airway muscles is an adaptive respiratory behaviour present from birth.


Assuntos
Animais Recém-Nascidos/fisiologia , Hipóxia/fisiopatologia , Língua/fisiologia , Animais , Eletrodos Implantados , Eletromiografia , Feminino , Nervo Hipoglosso/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Língua/inervação
18.
Neuron ; 37(5): 821-6, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12628172

RESUMO

Current consensus holds that a single medullary network generates respiratory rhythm in mammals. Pre-Bötzinger Complex inspiratory (I) neurons, isolated in transverse slices, and preinspiratory (pre-I) neurons, found only in more intact en bloc preparations and in vivo, are each proposed as necessary for rhythm generation. Opioids slow I, but not pre-I, neuronal burst periods. In slices, opioids gradually lengthened respiratory periods, whereas in more intact preparations, periods jumped nondeterministically to integer multiples of the control period (quantal slowing). These findings suggest that opioid-induced quantal slowing results from transmission failure of rhythmic drive from pre-I neurons to preBötC I networks, depressed below threshold for spontaneous rhythmic activity. Thus, both I (in the slice), and pre-I neurons are sufficient for respiratory rhythmogenesis.


Assuntos
Entorpecentes/farmacologia , Rede Nervosa/efeitos dos fármacos , Respiração/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Técnicas In Vitro , Rede Nervosa/fisiologia , Ratos , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiologia
19.
J Physiol ; 545(3): 1017-26, 2002 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-12482904

RESUMO

We report that after spontaneous breathing movements are stopped by administration of opioids (opioid-induced apnoea) in neonatal rats, abdominal muscles continue to contract at a rate similar to that observed during periods of ventilation. Correspondingly, in vitro bath application of a mu opioid receptor agonist suppresses the activity of the fourth cervical root (C4) supplying the diaphragm, but not the rhythmic activity of the first lumbar root (L1) innervating the abdominal muscles. This indicates the existence of opioid-resistant rhythmogenic neurones and a neuronal pathway transmitting their activity to the abdominal motoneurones. We have investigated this pathway by using a brainstem-spinal cord preparation of the neonatal rat. We identified bulbospinal neurones with a firing pattern identical to that of the L1 root. These neurones were located caudal to the obex in the vicinity of the nucleus retroambiguus. Resting potentials ranged from -49 to -40 mV (mean +/- S.D. -44.0 +/- 4.3 mV). The mean input resistance was 315.5 +/- 54.8 MOmega. The mean antidromic latency from the L1 level was 42.8 +/- 4.4 ms. Axons crossed the midline at the level of the cell body. The activity pattern of the bulbospinal neurones and the L1 root consisted of two bursts per respiratory cycle with a silent period during inspiration. This pattern is characteristic of preinspiratory neurones. We found that 11 % of the preinspiratory neurones projected to the area where the bulbospinal neurones were located. These preinspiratory neurones were found in the rostral ventrolateral medulla close (200-350 microm) to the ventral surface at the level of the rostral half of the nucleus retrofacialis. Our data suggest the operation of a disynaptic pathway from the preinspiratory neurones to the L1 motoneurones in the in vitro preparation. We propose that the same pathway is responsible for rhythmic activation of the abdominal muscles during opioid-induced apnoea in the newborn rat.


Assuntos
Músculos Abdominais/inervação , Animais Recém-Nascidos/fisiologia , Inalação/fisiologia , Entorpecentes/farmacologia , Neurônios/fisiologia , Sistema Respiratório/inervação , Músculos Abdominais/efeitos dos fármacos , Músculos Abdominais/fisiologia , Animais , Resistência a Medicamentos , Eletromiografia , Eletrofisiologia , Fentanila/farmacologia , Técnicas In Vitro , Região Lombossacral , Bulbo/fisiologia , Pescoço , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Opioides mu/agonistas , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...