Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 359: 107627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280267

RESUMO

This study comprehensively assesses radiofrequency (RF) volumetric wireless coils utilizing artificial materials for clinical breast MRI. In particular, we evaluated the transmit efficiency, RF safety, and homogeneity of magnetic field amplitude distribution for four structures electromagnetically coupled with a whole-body birdcage coil: extremely high permittivity ceramic coil, solenoid coil, Helmholtz coil, and metamaterial-inspired coil based on periodically coupled split-loop resonators. These coils exhibit favorable attributes, including lightweight construction, compactness, cost-effectiveness, and ease of manufacturing. The results of this study demonstrated that the metamaterial-inspired coil outperforms other wireless coils considered for addressing a specific problem in terms of the set of characteristics. In particular, the metamaterial-inspired coil achieved 85% and 88% homogeneity in magnetic field amplitude distribution at 3 T and 1.5 T MRI, respectively. Also, the 1.5 T metamaterial-inspired coil demonstrated the best performance, increasing the efficiency gain of the birdcage coil by 4.93 times and improving RF safety by 2.96 times. This research explains the limitations and peculiarity of utilizing the volumetric wireless coils in 1.5 and 3 T MRI systems.

2.
Magn Reson Med ; 89(3): 1251-1264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336799

RESUMO

PURPOSE: Development of a novel quadrature inductively driven transceive wireless coil for breast MRI at 1.5 T. METHODS: A quadrature wireless coil (HHMM-coil) design has been developed as a combination of two linearly polarized coils: a pair of 'metasolenoid' coils (MM-coil) and a pair of Helmholtz-type coils (HH-coil). The MM-coil consisted of an array of split-loop resonators. The HH-coil design included two electrically connected flat spirals. All the wireless coils were coupled to a whole-body birdcage coil. The HHMM-coil was studied and compared to the linear coils in terms of transmit and SAR efficiencies via numerical simulations. A prototype of HHMM-coil was built and tested on a 1.5 T scanner in a phantom and healthy volunteer. We also proposed an extended design of the HHMM-coil and compared its performance to a dedicated breast array. RESULTS: Numerical simulations of the HHMM-coil with a female voxel model have shown more than a 2.5-fold increase in transmit efficiency and a 1.7-fold enhancement of SAR efficiency compared to the linearly polarized coils. Phantom and in vivo imaging showed good agreement with the numerical simulations. Moreover, the HHMM-coil provided good image quality, visualizing all areas of interest similar to a multichannel breast array with a 32% reduction in signal-to-noise ratio. CONCLUSION: The proposed quadrature HHMM-coil allows the B 1 + $$ {\mathrm{B}}_1^{+} $$ -field to be significantly better focused in the region-of-interest compared to the linearly polarized coils. Thus, the HHMM-coil provides high-quality breast imaging on a 1.5 T scanner using a whole-body birdcage coil for transmit and receive.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Voluntários Saudáveis , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...