Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(9): 2151-2166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596441

RESUMO

The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.


Assuntos
Centrossomo , Mitose , Quinase 1 do Ponto de Checagem , Fosforilação , Quinase 1 Polo-Like
2.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399371

RESUMO

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Assuntos
Glucosiltransferases , Lentinula , Metabolômica , Metabolômica/métodos , Lentinula/enzimologia , Glucosiltransferases/química , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Compostos Fitoquímicos/metabolismo , Xilose/metabolismo , Genoma Fúngico , Espectrometria de Massa com Cromatografia Líquida
3.
Stem Cell Rev Rep ; 19(5): 1466-1481, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36862329

RESUMO

BACKGROUND: Despite highly effective machinery for the maintenance of genome integrity in human embryonic stem cells (hESCs), the frequency of genetic aberrations during in-vitro culture has been a serious issue for future clinical applications. METHOD: By passaging hESCs over a broad range of timepoints (up to 6 years), the isogenic hESC lines with different passage numbers with distinct cellular characteristics, were established. RESULT: We found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs) with normal copy number. Through high-resolution genome-wide approaches and transcriptome analysis, we found that culture adapted-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2, a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stabilization, misaligned chromosomes, and polyploidy. CONCLUSION: These studies suggest that the increased transcription of TPX2 in culture adapted hESCs could contribute to an increase in aberrant mitosis due to altered spindle dynamics.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Mitose/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular , Poliploidia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
4.
J Ginseng Res ; 46(3): 481-488, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600766

RESUMO

Background: Although the tumor-suppressive effects of ginsenosides in cell cycle have been well established, their pharmacological properties in mitosis have not been clarified yet. The chromosomal instability resulting from dysregulated mitotic processes is usually increased in cancer. In this study, we aimed to investigate the anticancer effects of ginsenoside Rg1 on mitotic progression in cancer. Materials and methods: Cancer cells were treated with ginsenoside Rg1 and their morphology and intensity of different protein were analyzed using immunofluorescence microscopy. The level of proteins in chromosomes was compared through chromosomal fractionation and Western blot analyses. The location and intensity of proteins in the chromosome were confirmed through immunostaining of mitotic chromosome after spreading. The colony formation assays were conducted using various cancer cell lines. Results: Ginsenoside Rg1 reduced cancer cell proliferation in some cancers through inducing mitotic arrest. Mechanistically, it inhibits the phosphorylation of histone H3 Thr3 (H3T3ph) mediated by Haspin kinase and concomitant recruitment of chromosomal passenger complex (CPC) to the centromere. Depletion of Aurora B at the centromere led to abnormal centromere integrity and spindle dynamics, thereby causing mitotic defects, such as increase in the width of the metaphase plate and spindle instability, resulting in delayed mitotic progression and cancer cell proliferation. Conclusion: Ginsenoside Rg1 reduces the level of Aurora B at the centromere via perturbing Haspin kinase activity and concurrent H3T3ph. Therefore, ginsenoside Rg1 suppresses cancer cell proliferation through impeding mitotic processes, such as chromosome alignment and spindle dynamics, upon depletion of Aurora B from the centromere.

5.
Cell Mol Life Sci ; 78(6): 2821-2838, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33067654

RESUMO

Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.


Assuntos
Cromossomos/metabolismo , Mitose , Proteína Fosfatase 2C/metabolismo , Fuso Acromático/metabolismo , Anáfase , Aurora Quinase B/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/genética , Dano ao DNA , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Survivina/metabolismo
6.
Bioorg Med Chem ; 28(11): 115491, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327350

RESUMO

In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivativesusing an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.


Assuntos
Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Nat Commun ; 11(1): 612, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001712

RESUMO

The kinase Aurora B forms the chromosomal passenger complex (CPC) together with Borealin, INCENP, and Survivin to mediate chromosome condensation, the correction of erroneous spindle-kinetochore attachments, and cytokinesis. Phosphorylation of histone H3 Thr3 by Haspin kinase and of histone H2A Thr120 by Bub1 concentrates the CPC at the centromere. However, how the CPC is recruited to chromosome arms upon mitotic entry is unknown. Here, we show that asymmetric dimethylation at Arg2 on histone H3 (H3R2me2a) by protein arginine methyltransferase 6 (PRMT6) recruits the CPC to chromosome arms and facilitates histone H3S10 phosphorylation by Aurora B for chromosome condensation. Furthermore, in vitro assays show that Aurora B preferentially binds to the H3 peptide containing H3R2me2a and phosphorylates H3S10. Our findings indicate that the long-awaited key histone mark for CPC recruitment onto mitotic chromosomes is H3R2me2a, which is indispensable for maintaining appropriate CPC levels in dynamic translocation throughout mitosis.


Assuntos
Arginina/metabolismo , Aurora Quinase B/metabolismo , Segregação de Cromossomos , Cromossomos Humanos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/patologia , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citocinese , Desmetilação , Progressão da Doença , Feminino , Células HeLa , Histonas/química , Humanos , Células MCF-7 , Metilação , Mitose , Fosforilação , RNA Interferente Pequeno/metabolismo
8.
Mol Cells ; 42(12): 840-849, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31722512

RESUMO

The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.


Assuntos
Centríolos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fuso Acromático/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Int Immunopharmacol ; 75: 105738, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31306980

RESUMO

Chronic low back pain due to lumbar spinal stenosis (LSS) is common, costly, mechanistically complex, and clinically challenging. However, the factors and mechanisms causing and mediating chronic pain induced by cauda equina compression remain unclear. Here, we examined the role of cyclooxygenase (COX)-2 in infiltrated macrophages, a key mediator of inflammation, in chronic neuropathic pain by LSS using an animal model. LSS was induced in adult male rats by cauda equina compression procedure using a silicone block within the epidural spaces of L5-L6 vertebrae. Locomotor deficit was observed after compression and mechanical allodynia was developed progressively for 4 weeks after injury. A number of macrophage were also infiltrated into the spinal parenchyma and cauda equina and COX-2 was expressed in infiltrated macrophages at 28 days after cauda equina compression. The administration of COX-2 inhibitors, celecoxib and MPO-0029, significantly alleviated LSS-induced chronic mechanical allodynia and inhibited the mRNA expression of inflammatory mediators such as tnf-α, Il-1ß, il-6, and inos. Furthermore, COX-2 inhibitors significantly reduced prostaglandin E2 production. These results demonstrated the role of COX-2 in LSS-induced chronic neuropathic pain and suggest that the regulation of COX-2 can be considered as a therapeutic target to relive neuropathic pain.


Assuntos
Celecoxib/uso terapêutico , Dor Crônica/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Pirróis/uso terapêutico , Estenose Espinal/tratamento farmacológico , Animais , Cauda Equina/imunologia , Dor Crônica/etiologia , Dor Crônica/imunologia , Ciclo-Oxigenase 2/imunologia , Citocinas/imunologia , Dinoprostona/imunologia , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Vértebras Lombares , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Neuralgia/etiologia , Neuralgia/imunologia , Ratos Sprague-Dawley , Estenose Espinal/complicações
10.
Prostaglandins Other Lipid Mediat ; 144: 106347, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229523

RESUMO

We previously reported the strong inhibitory potency of N-phenyl-N'-(4- benzyloxyphenoxycarbonyl)-4-chlorophenylsulfonyl hydrazide (PBCH) on lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) production in macrophages. Herein, we characterized PBCH as a microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor and evaluated its anti-inflammatory effects using in vivo experimental models. PBCH inhibited PGE2 production in various activated cells in addition to inhibiting the mPGES-1 activity. In the ear edema and paw edema rat models, PBCH significantly reduced ear thickness and paw swelling, respectively. Besides, in adjuvant-induced arthritis (AIA) rat model, PBCH decreased paw swelling, plasma rheumatoid factor (RF), and receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. Furthermore, while PBCH reduced the plasma prostaglandin E metabolite (PGEM) levels, it did not affect the plasma levels of prostacyclin (PGI2) and thromboxane A2 (TXA2). Our data suggest that PBCH downregulates PGE2 production by interfering with the mPGES-1 activity, thus reducing edema and arthritis in rat models.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Tiazóis/farmacologia , Células A549 , Animais , Anti-Inflamatórios/uso terapêutico , Dinoprostona/biossíntese , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidrazinas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Tiazóis/uso terapêutico
11.
Toxicol In Vitro ; 59: 115-125, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30980863

RESUMO

Bisphenol A [BPA, 2,2-bis-(4-hydroxyphenyl)propane] is one of the most prevalent synthetic environmental estrogens; as an endocrine disruptor, it is associated with endocrine-related cancers including breast, ovarian, and prostate. However, the mechanisms by which BPA contributes to carcinogenesis are unclear. This study aims to clarify its toxic effects on mitotic cells and investigate the molecular mechanism. In vitro effects of BPA on mitotic progression were examined by performing experiments on HeLa cells. Proteins involved in mitotic processes were detected by Western blot, live cell imaging, and immunofluorescence staining. The results showed that BPA increased chromosomal instability by perturbing mitotic processes such as bipolar spindle formation and spindle microtubule attachment to the kinetochore. BPA prolonged mitotic progression by disturbing spindle attachment and concomitant activating spindle assembly checkpoint (SAC). Mechanistically, BPA interfered proper localization of HURP to the proximal ends of spindle microtubules, Kif2a to the minus ends of spindle microtubules, and TPX2 on the mitotic spindle. This mislocalization of microtubule associated proteins (MAPs) is postulated to lead to spindle attachment failure. Furthermore, BPA caused multipolar spindle by inducing centriole overduplication and premature disengagement. Although BPA acts as an estrogen receptor (ER) agonist, mitotic defects caused by BPA occurred in an ER-independent manner. Our findings indicate that BPA may stimulate carcinogenesis not only by acting as an endocrine disruptor but also by increasing chromosomal instability during mitosis.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Mitose/efeitos dos fármacos , Fenóis/toxicidade , Carcinogênese/induzido quimicamente , Centríolos/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Células MCF-7 , Proteínas de Neoplasias/metabolismo
12.
Molecules ; 23(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949932

RESUMO

Sakuranetin (SKN), found in cherry trees and rice, is a flavanone with various pharmacological activities. It is biosynthesized from naringenin in rice or cherry trees, and the metabolism of SKN has been studied in non-human species. The present study aimed to investigate the metabolic pathways of SKN in human liver microsomes and identify the phase I and phase II metabolites, as well as evaluate the potential for drug⁻herb interactions through the modulation of drug metabolizing enzymes (DMEs). HPLC-DAD and HPLC-electrospray mass spectrometry were used to study the metabolic stability and identify the metabolites from human liver microsomes incubated with SKN. The potential of SKN to inhibit the DMEs was evaluated by monitoring the formation of a DME-specific product. The cytochrome P450 2B6 and 3A4-inductive effects were studied using promoter reporter assays in human hepatocarcinoma cells. The major pathways for SKN metabolism include B-ring hydroxylation, 5-O-demethylation, and conjugation with glutathione or glucuronic acid. The phase I metabolites were identified as naringenin and eriodictyol. SKN was found to be a UDP-glucuronosyltransferases (UGT) 1A9 inhibitor, whereas it induced transactivation of the human pregnane X receptor-mediated cytochrome P450 (CYP) 3A4 gene.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Metaboloma , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Receptor de Pregnano X , Regiões Promotoras Genéticas/genética , Receptores de Esteroides/metabolismo , Ativação Transcricional/genética , Uridina Difosfato Ácido Glucurônico/metabolismo
13.
Exp Mol Med ; 49(11): e390, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29147007

RESUMO

When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.


Assuntos
Endopeptidases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aminoácidos/metabolismo , Apoptose , Sobrevivência Celular , Humanos , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
14.
Toxicol Lett ; 281: 110-118, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28964810

RESUMO

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most potent risk factor among tobacco-related carcinogens in lung cancer progression and outcomes. Although genetic mutations and chromosome instability have been detected in NNK-induced lung tumors, the oncogenic mechanisms of NNK are not fully understood. Here, we show that NNK increases chromosomal instability by disrupting spindle microtubule (MT) attachment to the kinetochore (KT) and spindle dynamics. Mechanistically, NNK blocks the targeting of p53 to the centrosome during mitosis, leading to chromosome alignment defects in metaphase. Therefore, lung cancer cells with wild-type p53, such as A594 and H226B, are more resistant to the NNK treatment than p53-mutant lung cancer cells, such as A1299 and H226Br. Although NNK does not affect the levels or transcriptional activity of p53, the reduction of the p53 level at the centrosome exacerbates the NNK-induced chromosome alignment defect in A549 and H226B cells. Therefore, p53 protects against NNK-induced chromosome instability by modulating the function of centrosome-localized p53 and not by modulating transcriptional activity. We conclude that NNK may increase the risk of lung cancer progression and poorer outcomes in patients with p53 mutations by perturbing proper mitotic progression and chromosome integrity.


Assuntos
Carcinógenos/toxicidade , Centrossomo/efeitos dos fármacos , Nicotiana/química , Nitrosaminas/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Linhagem Celular Tumoral , Centrossomo/metabolismo , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/genética , Células HeLa , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mitose/efeitos dos fármacos , Fatores de Risco , Proteína Supressora de Tumor p53/genética
15.
Br J Pharmacol ; 174(12): 1810-1825, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299790

RESUMO

BACKGROUND AND PURPOSE: Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH: The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS: Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS: TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Instabilidade Cromossômica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/química , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Ligantes , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Adulto Jovem
16.
Phytother Res ; 31(1): 140-151, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28058783

RESUMO

Larrea nitida Cav. (LNC), which belongs to the family Zygophyllaceae, is widely indigenous and used in South America to treat various pathological conditions. It contains the antioxidant and antiinflammatory but toxic nordihydroguaiaretic acid (NDGA) as well as O-methylated metabolite of NDGA (MNDGA) as bioactive compounds. The hepatic metabolism-based toxicological potential of extracts of LNC (LNE), NDGA, and MNDGA has not previously been reported. The present study aimed to characterize the phase I and phase II hepatic metabolism and reactive intermediates of LNE, NDGA, and MNDGA and their effects on the major drug-metabolizing enzymes in vitro and ex vivo. A methanol extract of LNC collected from Chile as well as NDGA and MNDGA isolated from LNE were subjected to metabolic stability assays in liver microsomes in the presence of the cofactors reduced nicotinamide dinucleotide phosphate (NADPH) and/or uridine 5'-diphosphoglucuronic acid (UDPGA). Cytochrome P450 (CYP) inhibition assays were performed using CYP isozyme-specific model substrates to examine the inhibitory activities of LNE, NDGA, and MNDGA, which were expressed as % inhibition and IC50 values. Ex vivo CYP induction potential was investigated in the liver microsomes prepared from the rats intraperitoneally administered with LNE. Glutathione (GSH) adduct formation was monitored by LC-MS3 analysis of the microsomal incubation samples with either NDGA or MNDGA and an excess of GSH to determine the formation of electrophilic reactive intermediates. Both NDGA and MNDGA were stable to NADPH-dependent phase I metabolism, but labile to glucuronide conjugation. LNE, NDGA, and MNDGA showed significant inhibitory effects on CYP1A2, 2C9, 2D6, and/or 3A4, with IC50 values in the micromolar range. LNE was found to be a CYP1A2 inducer in ex vivo rat experiments, and mono- and di-GSH adducts of both NDGA and MNDGA were identified by LC-MS3 analysis. Our study suggests that hepatic clearance is the major elimination route for the lignans NDGA and MNDGA present in LNE. These lignans may possess the ability to modify biomacromolecules via producing reactive intermediates. In addition, LNE, NDGA, and MNDGA are found to be inhibitors for various CYP isozymes such as CYP2C9 and 3A4. Thus, the consumption of LNC as an herbal preparation or NDGA may cause metabolism-driven herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Larrea/química , Lignanas/química , Fígado/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Animais , Feminino , Interações Ervas-Drogas , Humanos , Lignanas/farmacologia , Ratos
17.
J Cell Sci ; 129(14): 2719-25, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284004

RESUMO

Active turnover of spindle microtubules (MTs) for the formation of a bi-orientated spindle, chromosome congression and proper chromosome segregation is regulated by MT depolymerases such as the kinesin-13 family and the plus-end-tracking proteins (+TIPs). However, the control mechanisms underlying the spindle MT dynamics that are responsible for poleward flux at the minus end of MTs are poorly understood. Here, we show that Mdp3 (also known as MAP7D3) forms a complex with DDA3 (also known as PSRC1) and controls spindle dynamics at the minus end of MTs by inhibiting DDA3-mediated Kif2a recruitment to the spindle. Aberrant Kif2a activity at the minus end of spindle MTs in Mdp3-depleted cells decreased spindle stability and resulted in unaligned chromosomes in metaphase, lagging chromosomes in anaphase, and chromosome bridges in telophase and cytokinesis. Although they play opposing roles in minus-end MT dynamics, acting as an MT destabilizer and an MT stabilizer, respectively, DDA3 and Mdp3 did not affect the localization of each other. Thus, the DDA3 complex orchestrates MT dynamics at the MT minus end by fine-tuning the recruitment of Kif2a to regulate minus-end MT dynamics and poleward MT flux at the mitotic spindle.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Fuso Acromático/metabolismo , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Polimerização , Ligação Proteica
18.
J Biol Chem ; 291(34): 17579-92, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27325694

RESUMO

The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.


Assuntos
Anáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metáfase/fisiologia , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HeLa , Humanos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
19.
Int J Nanomedicine ; 11: 1413-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27103799

RESUMO

Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs) is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA), a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM). In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC) of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together, this study demonstrates that HA-conjugated liposomes encapsulating GEM show promise for the therapy of breast cancer in vitro and in a xenograft model by targeting the BCSCs.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desoxicitidina/análogos & derivados , Ácido Hialurônico/química , Lipossomos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Meia-Vida , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
20.
Cell Mol Life Sci ; 73(17): 3375-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26906715

RESUMO

Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.


Assuntos
Aurora Quinase B/metabolismo , Citocinas/metabolismo , Proteína Fosfatase 2/metabolismo , Aurora Quinase B/antagonistas & inibidores , Benzamidas/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Interfase , Pontos de Checagem da Fase M do Ciclo Celular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...