Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0286622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287085

RESUMO

The polysaccharide capsule of Cryptococcus neoformans-an opportunistic basidiomycete pathogen and the major etiological agent of fungal meningoencephalitis-is a key virulence factor that prevents its phagocytosis by host innate immune cells. However, the complex signaling networks for their synthesis and attachment remain elusive. In this study, we systematically analyzed capsule biosynthesis and signaling networks using C. neoformans transcription factor (TF) and kinase mutant libraries under diverse capsule-inducing conditions. We found that deletion of GAT201, YAP1, BZP4, and ADA2 consistently caused capsule production defects in all tested media, indicating that they are capsule-regulating core TFs. Epistatic and expression analyses showed that Yap1 and Ada2 control Gat201 upstream, whereas Bzp4 and Gat201 independently regulate capsule production. Next, we searched for potential upstream kinases and found that mutants lacking PKA1, BUD32, POS5, IRE1, or CDC2801 showed reduced capsule production under all three capsule induction conditions, whereas mutants lacking HOG1 and IRK5 displayed enhanced capsule production. Pka1 and Irk5 controlled the induction of GAT201 and BZP4, respectively, under capsule induction conditions. Finally, we monitored the transcriptome profiles governed by Bzp4, Gat201, and Ada2 under capsule-inducing conditions and demonstrated that these TFs regulate redundant and unique sets of downstream target genes. Bzp4, Ada2, and Gat201 govern capsule formation in C. neoformans by regulating the expression of various capsule biosynthesis genes and chitin/chitosan synthesis genes in a positive and negative manner, respectively. In conclusion, this study provides further insights into the complex regulatory mechanisms of capsule production-related signaling pathways in C. neoformans. IMPORTANCE Over the past decades, human fungal pathogens, including C. neoformans, have emerged as a major public threat since the AIDS pandemic, only to gain more traction in connection to COVID-19. Polysaccharide capsules are rare fungal virulence factors that are critical for protecting C. neoformans from phagocytosis by macrophages. To date, more than 75 proteins involved in capsule synthesis and cell wall attachment have been reported in C. neoformans; however, their complex upstream signaling networks remain elusive. In this study, we demonstrated that Ada2, Yap1, Bzp4, and Gat201 were key capsule-inducing transcriptional regulators. Yap1 and Ada2 function upstream of Gat201, whereas Bzp4 and Gat201 function independently. Genome-wide transcriptome profiling revealed that Bzp4, Gat201, and Ada2 promote capsule production and attachment by positively and negatively regulating genes involved in capsule synthesis and chitin/chitosan synthesis, respectively. Thus, this study provides comprehensive insights into the complex capsule-regulating signaling pathway in C. neoformans.


Assuntos
Quitosana , Cryptococcus neoformans , Transdução de Sinais , Quitosana/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Polissacarídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética
2.
Nat Commun ; 11(1): 4212, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839469

RESUMO

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Monoéster Fosfórico Hidrolases/genética , Animais , Análise por Conglomerados , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Camundongos Endogâmicos , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais/genética , Termotolerância/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
3.
Pharmaceutics ; 12(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423051

RESUMO

In the pharmaceutical industry, it is a major challenge to maintain consistent quality of drug products when the batch scale of a process is changed from a laboratory scale to a pilot or commercial scale. Generally, a pharmaceutical manufacturing process involves various unit operations, such as blending, granulation, milling, tableting and coating and the process parameters of a unit operation have significant effects on the quality of the drug product. Depending on the change in batch scale, various process parameters should be strategically controlled to ensure consistent quality attributes of a drug product. In particular, the granulation may be significantly influenced by scale variation as a result of changes in various process parameters and equipment geometry. In this study, model-based scale-up methodologies for pharmaceutical granulation are presented, along with data from various related reports. The first is an engineering-based modeling method that uses dimensionless numbers based on process similarity. The second is a process analytical technology-based modeling method that maintains the desired quality attributes through flexible adjustment of process parameters by monitoring the quality attributes of process products in real time. The third is a physics-based modeling method that involves a process simulation that understands and predicts drug quality through calculation of the behavior of the process using physics related to the process. The applications of these three scale-up methods are summarized according to granulation mechanisms, such as wet granulation and dry granulation. This review shows that these model-based scale-up methodologies provide a systematic process strategy that can ensure the quality of drug products in the pharmaceutical industry.

4.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575776

RESUMO

Melanin is an antioxidant polyphenol pigment required for the pathogenicity of many fungal pathogens, but comprehensive regulatory mechanisms remain unidentified. In this study, we systematically analyzed melanin-regulating signaling pathways in Cryptococcus neoformans and identified four melanin-regulating core transcription factors (TFs), Bzp4, Usv101, Mbs1, and Hob1, required for induction of the laccase gene (LAC1). Bzp4, Usv101, and Mbs1 independently regulate LAC1 induction, whereas Hob1 controls Bzp4 and Usv101 expression. Both Bzp4 and Usv101 are localized in the cytoplasm under nutrient-rich conditions (i.e., in the presence of yeast extract-peptone-dextrose [YPD] medium) but translocate into the nucleus upon nutrient starvation (i.e., in the presence of yeast nitrogen base [YNB] medium without glucose), and Mbs1 is constitutively localized in the nucleus. Notably, the cAMP pathway is not involved in regulation of the four TFs, but the high-osmolarity glycerol response (HOG) pathway negatively regulates induction of BZP4 and LAC1 Next, we searched for potential kinases upstream of the core TFs and identified nine core kinases; their deletion led to defective melanin production and LAC1 induction. Deletion of GSK3 or KIC1 abolished induction of LAC1 and BZP4 and perturbed nuclear translocation of Bzp4. Notably, Gsk3 also regulated expression of HOB1, USV101, and MBS1, indicating that it is a critical melanin-regulating kinase. Finally, an RNA sequencing-based transcriptome analysis of the wild-type strain and of bzp4Δ, usv101Δ, hob1Δ, and mbs1Δ strains under nutrient-rich and nutrient-starved conditions revealed that the melanin-regulating core TFs govern redundant and distinct classes of genes involved in a variety of biological processes.IMPORTANCE Melanins are dark green, brown, or black pigments that serve as antioxidant, reactive oxygen species (ROS) scavengers that protect fungal pathogens from radiation and host immune responses. Cryptococcus neoformans, the major etiological agent of fungal meningoencephalitis, also utilizes melanin as a key virulence factor. In this basidiomycete pathogen, melanin production is regulated by the cAMP and high-osmolarity glycerol response (HOG) pathways, and yet its complex signaling networks remain poorly described. In this study, we uncovered novel melanin synthesis regulatory networks consisting of core transcription factors (TFs), including Bzp4, Usv101, Hob1, and Mbs1, and core kinases Gsk3 and Kic1. These networks were identified through coupling systematic analyses of the expression and epistatic relationships of TF and kinase mutant libraries in the presence of diverse melanin substrates with transcriptome profiling of the core TF mutants. Thus, this report provides comprehensive insight into the melanin-regulating pathways in C. neoformans and other fungal pathogens.


Assuntos
Cryptococcus neoformans/metabolismo , Melaninas/biossíntese , Fatores de Transcrição/metabolismo , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Lacase , Melaninas/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
5.
Anat Cell Biol ; 45(3): 193-202, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23094208

RESUMO

Wnt/ß-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/ß-catenin signaling is involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/ß-catenin signaling in the dento-alveolar complex formation, we generated conditional ß-catenin activation mice through intercross of Catnb(+/lox(ex3)) mice with Col1a1-cre mice. In mutant mice, tooth formation and eruption was disturbed. Lower incisors and molars did not erupt. Bone formation was increased in the mandible but tooth formation was severely disturbed. Hypomineralized dentin was deposited in the crown but roots of molars were extremely short and distorted. In the odontoblasts of mutant molars, expression of dentin matrix proteins was obviously downregulated following the activation of ß-catenin whereas that of mineralization inhibitor was increased. Cementum and periodontal ligament were hypoplastic but periodontal space was narrow due to increased alveolar bone formation. While cementum matrix proteins were decreased, bone matrix proteins were increased in the cementum and alveolar bone of mutant mice. These results indicate that local activation of ß-catenin in the osteoblasts and odontoblasts leads to aberrant dento-alveolar complex formation. Therefore, appropriate inhibition of Wnt/ß-catenin signaling is important for the dento-alveolar complex formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...