Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308075, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626376

RESUMO

Manipulating thermal properties of materials can be interpreted as the control of how vibrations of atoms (known as phonons) scatter in a crystal lattice. Compared to a perfect crystal, crystalline solids with defects are expected to have shorter phonon mean free paths caused by point defect scattering, leading to lower lattice thermal conductivities than those without defects. While this is true in many cases, alloying can increase the phonon mean free path in the Cd-doped AgSnSbSe3 system to increase the lattice thermal conductivity from 0.65 to 1.05 W m-1 K-1 by replacing 18% of the Sb sites with Cd. It is found that the presence of lone pair electrons leads to the off-centering of cations from the centrosymmetric position of a cubic lattice. X-ray pair distribution function analysis reveals that this structural distortion is relieved when the electronic configuration of the dopant element cannot produce lone pair electrons. Furthermore, a decrease in the Grüneisen parameter with doping is experimentally confirmed, establishing a relationship between the stereochemical activity of lone pair electrons and the lattice anharmonicity. The observed "harmonic" behavior with doping suggests that lone pair electrons must be preserved to effectively suppress phonon transport in these systems.

2.
Nat Commun ; 15(1): 1996, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485943

RESUMO

Thermoelectric technology has potential for converting waste heat into electricity. Although traditional thermoelectric materials exhibit extremely high thermoelectric performances, their scarcity and toxicity limit their applications. Zinc oxide (ZnO) emerges as a promising alternative owing to its high thermal stability and relatively high Seebeck coefficient, while also being earth-abundant and nontoxic. However, its high thermal conductivity (>40 W m-1K-1) remains a challenge. In this study, we use a multi-step strategy to achieve a significantly high dimensionless figure-of-merit (zT) value of approximately 0.486 at 580 K (estimated value) by interfacing graphene quantum dots with 3D nanostructured ZnO. Here, we show the fabrication of graphene quantum dots interfaced 3D ZnO, yielding the highest zT value ever reported for ZnO counterparts; specifically, our experimental results indicate that the fabricated 3D GQD@ZnO exhibited a significantly low thermal conductivity of 0.785 W m-1K-1 (estimated value) and a remarkably high Seebeck coefficient of - 556 µV K-1 at 580 K.

3.
Adv Sci (Weinh) ; 11(1): e2303704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032705

RESUMO

As the demand for diverse nanostructures in physical/chemical devices continues to rise, the development of nanotransfer printing (nTP) technology is receiving significant attention due to its exceptional throughput and ease of use. Over the past decade, researchers have attempted to enhance the diversity of materials and substrates used in transfer processes as well as to improve the resolution, reliability, and scalability of nTP. Recent research on nTP has made continuous progress, particularly using the control of the interfacial adhesion force between the donor mold, target material, and receiver substrate, and numerous practical nTP methods with niche applications have been demonstrated. This review article offers a comprehensive analysis of the chronological advancements in nTP technology and categorizes recent strategies targeted for high-yield and versatile printing based on controlling the relative adhesion force depending on interfacial layers. In detail, the advantages and challenges of various nTP approaches are discussed based on their working mechanisms, and several promising solutions to improve morphological/material diversity are presented. Furthermore, this review provides a summary of potential applications of nanostructured devices, along with perspectives on the outlook and remaining challenges, which are expected to facilitate the continued progress of nTP technology and to inspire future innovations.

4.
Heliyon ; 9(11): e21117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928035

RESUMO

Thermoelectric materials are attracting considerable attention to alleviate the global energy crisis by enabling the direct conversion of heat into electricity. As a class of I-V-VI2 semiconductors, AgBiSe2 is expected to be the potential thermoelectric material to replace conventional PbTe-based compounds due to its non-toxic and abundant nature of its constituent elements. This review article summarizes the fundamental properties of AgBiSe2, thermoelectric properties, the effect of different dopants on its transport properties and entropy engineering for cubic phase stabilization with the detailed description of related techniques used to analyze the properties of AgBiSe2. The current thermoelectric figure-of-merit and approaches to further improve performance and operational stability are also discussed.

5.
Nat Commun ; 14(1): 5402, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669945

RESUMO

Suppressing the oxidation of active-Ir(III) in IrOx catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrOx catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrOx catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrOx catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm-2. Moreover, Ir-specific power (74.8 kW g-1) indicates its remarkable potential for realizing gigawatt-scale H2 production for the first time.

6.
Adv Mater ; 34(38): e2204132, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944565

RESUMO

Cation disordering is commonly found in multinary cubic compounds, but its effect on electronic properties has been neglected because of difficulties in determining the ordered structure and defect energetics. An absence of rational understanding of the point defects present has led to poor reproducibility and uncontrolled conduction type. AgBiSe2 is a representative compound that suffers from poor reproducibility of thermoelectric properties, while the origins of its intrinsic n-type conductivity remain speculative. Here, it is demonstrated that cation disordering is facilitated by BiAg charged antisite defects in cubic AgBiSe2 which also act as a principal donor defect that greatly controls the electronic properties. Using density functional theory calculations and in situ Raman spectroscopy, how saturation annealing with selenium vapor can stabilize p-type conductivity in cubic AgBiSe2 alloyed with SnSe at high temperatures is elucidated. With stable and controlled hole concentration, a peak is observed in the weighted mobility and the density-of-states effective mass in AgBiSnSe3 , implying an increased valley degeneracy in this system. These findings corroborate the importance of considering the defect energetics for exploring the dopability of ternary thermoelectric chalcogenides and engineering electronic bands by controlling self-doping.

7.
Nat Commun ; 13(1): 3741, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768427

RESUMO

Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-ß-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 µM h-1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.


Assuntos
Temperatura Alta , Peróxido de Hidrogênio , Hidrocarbonetos , Hidroxilação , Emissões de Veículos
8.
ACS Appl Mater Interfaces ; 14(1): 1270-1279, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34979804

RESUMO

Charge carrier transport and corresponding thermoelectric properties are often affected by several parameters, necessitating a thorough comparative study for a profound understanding of the detailed conduction mechanism. Here, as a model system, we compare the electronic transport properties of two layered semiconductors, Sb2Si2Te6 and Bi2Si2Te6. Both materials have similar grain sizes and morphologies, yet their conduction characteristics are significantly different. We found that phase boundary scattering can be one of the main factors for Bi2Si2Te6 to experience significant charge carrier scattering, whereas Sb2Si2Te6 is relatively unaffected by the phenomenon. Furthermore, extensive point defect scattering in Sb2Si2Te6 significantly reduces its lattice thermal conductivity and results in high zT values across a broad temperature range. These findings provide novel insights into electron transport within these materials and should lead to strategies for further improving their thermoelectric performance.

9.
Nat Commun ; 13(1): 75, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013208

RESUMO

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations. Here, we introduce a metal oxide charge transfer complex (NiO:MoO3-complex), which is composed of few-nm-size MoO3 domains embedded in NiO matrices, as a highly tunable carrier injection material. Charge transfer at the finely dispersed interfaces of NiO and MoO3 throughout the entire film enables effective energy level modulation over a wide work function range of 4.47 - 6.34 eV along with enhanced electrical conductivity. The high performance of NiO:MoO3-complex is confirmed by achieving 189% improved current efficiency compared to that of MoO3-based green OLEDs and also an external quantum efficiency of 17% when applied to blue OLEDs, which is superior to 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile-based conventional devices.

10.
Biosens Bioelectron ; 202: 113991, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078144

RESUMO

Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for "separation-free" detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Redes Neurais de Computação , Análise Espectral Raman/métodos , Staphylococcus epidermidis
11.
Nat Commun ; 12(1): 6420, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741042

RESUMO

The electrical control of antiferromagnetic moments is a key technological goal of antiferromagnet-based spintronics, which promises favourable device characteristics such as ultrafast operation and high-density integration as compared to conventional ferromagnet-based devices. To date, the manipulation of antiferromagnetic moments by electric current has been demonstrated in epitaxial antiferromagnets with broken inversion symmetry or antiferromagnets interfaced with a heavy metal, in which spin-orbit torque (SOT) drives the antiferromagnetic domain wall. Here, we report current-induced manipulation of the exchange bias in IrMn/NiFe bilayers without a heavy metal. We show that the direction of the exchange bias is gradually modulated up to ±22 degrees by an in-plane current, which is independent of the NiFe thickness. This suggests that spin currents arising in the IrMn layer exert SOTs on uncompensated antiferromagnetic moments at the interface which then rotate the antiferromagnetic moments. Furthermore, the memristive features are preserved in sub-micron devices, facilitating nanoscale multi-level antiferromagnetic spintronic devices.

12.
Sci Adv ; 7(41): eabh2012, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623908

RESUMO

Nanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons. Despite the high annealing temperatures, the average grain size was maintained at ~6 nm, which also retained their structural integrity. We observe that excess oxygen in amorphous tin oxide nanoribbons prevents merging of small grains during crystallization, leading to suppressed grain growth. As an exemplary application, we demonstrate a gas sensor using grain growth­suppressed tin oxide nanoribbons, which exhibited both high sensitivity and unusual long-term operation stability. Our findings provide a previously unknown pathway to simultaneously achieve high performance and excellent thermal stability in nanograined metal oxide nanostructures.

13.
Adv Sci (Weinh) ; 8(19): e2100640, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363354

RESUMO

Noble metal-based surface-enhanced Raman spectroscopy (SERS) has enabled the simple and efficient detection of trace-amount molecules via significant electromagnetic enhancements at hot spots. However, the small Raman cross-section of various analytes forces the use of a Raman reporter for specific surface functionalization, which is time-consuming and limited to low-molecular-weight analytes. To tackle these issues, a hybrid SERS substrate utilizing Ag as plasmonic structures and GaN as charge transfer enhancement centers is presented. By the conformal printing of Ag nanowires onto GaN nanopillars, a highly sensitive SERS substrate with excellent uniformity can be fabricated. As a result, remarkable SERS performance with a substrate enhancement factor of 1.4 × 1011 at 10 fM for rhodamine 6G molecules with minimal spot variations can be realized. Furthermore, quantification and multiplexing capabilities without surface treatments are demonstrated by detecting harmful antibiotics in aqueous solutions. This work paves the way for the development of a highly sensitive SERS substrate by constructing complex metal-semiconductor architectures.


Assuntos
Antibacterianos/análise , Gálio/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Biopolímeros/química , Tamanho da Partícula , Prata , Propriedades de Superfície
14.
Adv Sci (Weinh) ; 8(20): e2100895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390224

RESUMO

Thermoelectric properties are frequently manipulated by introducing point defects into a matrix. However, these properties often change in unfavorable directions owing to the spontaneous formation of vacancies at high temperatures. Although it is crucial to maintain high thermoelectric performance over a broad temperature range, the suppression of vacancies is challenging since their formation is thermodynamically preferred. In this study, using PbTe as a model system, it is demonstrated that a high thermoelectric dimensionless figure of merit, zT ≈ 2.1 at 723 K, can be achieved by suppressing the vacancy formation via dopant balancing. Hole-killer Te vacancies are suppressed by Ag doping because of the increased electron chemical potential. As a result, the re-dissolution of Na2 Te above 623 K can significantly increase the hole concentration and suppress the drop in the power factor. Furthermore, point defect scattering in material systems significantly reduces lattice thermal conductivity. The synergy between defect and carrier engineering offers a pathway for achieving a high thermoelectric performance by alleviating the power factor drop and can be utilized to enhance thermoelectric properties of thermoelectric materials.

15.
Small ; 16(40): e2002109, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32930494

RESUMO

Environmentally friendly ZnSe/ZnS core/shell quantum dots (QDs) as an alternative blue emission material to Cd-based QDs have shown great potential for use in next-generation displays. However, it remains still challenging to realize a high-efficiency quantum dot light-emitting diode (QLED) based on ZnSe/ZnS QDs due to their insufficient electrical characteristics, such as excessively high electron mobility (compared to the hole mobility) and the deep-lying valence band. In this work, the effects of QDs doped with hole transport materials (hybrid QDs) on the electrical characteristics of a QLED are investigated. These hybrid QDs show a p-type doping effect, which leads to a change in the density of the carriers. Specifically, the hybrid QDs can balance electrons and holes by suppressing the overflow of electrons and improving injection of holes, respectively. These electrical characteristics help to improve device performance. In detail, an external quantum efficiency (EQE) of 6.88% is achieved with the hybrid QDs. This is increased by 180% compared to a device with pure ZnSe/ZnS QDs (EQE of 2.46%). This record is the highest among deep-blue Cd-free QLED devices. These findings provide the importance of p-type doping effect in QD layers and guidance for the study of the electrical properties of QDs.

16.
Adv Mater ; 32(38): e2002099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33617118

RESUMO

Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN-BN, BN-membrane, and BN-substrate boundaries. Therefore, without incorporating any additives in the BN film and applying any surface treatment on target substrates, DIAS achieves a near 100% transfer yield of pure BN films on diverse substrates, including substrates containing significant surface irregularities. The printed BNs demonstrate high optical transparency (>90%) and excellent thermal conductivity (>167 W m-1 K-1) for few-micrometer-thick films due to their dense and well-ordered microstructures. In addition to outstanding heat dissipation capability, substantial optical enhancement effects are confirmed for light-emitting, photoluminescent, and photovoltaic devices, demonstrating their remarkable promise for next-generation optoelectronic device platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...