Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(12): 4329-4339, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145170

RESUMO

While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 µm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).

2.
Nanotechnology ; 34(44)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37478831

RESUMO

In this study, a simple yet versatile method is proposed for identifying the number of exfoliated graphene layers transferred on an oxide substrate from optical images, utilizing a limited number of input images for training, paired with a more traditional number of a few thousand well-published Github images for testing and predicting. Two thresholding approaches, namely the standard deviation-based approach and the linear regression-based approach, were employed in this study. The method specifically leverages the red, green, and blue color channels of image pixels and creates a correlation between the green channel of the background and the green channel of the various layers of graphene. This method proves to be a feasible alternative to deep learning-based graphene recognition and traditional microscopic analysis. The proposed methodology performs well under conditions where the effect of surrounding light on the graphene-on-oxide sample is minimum and allows rapid identification of the various graphene layers. The study additionally addresses the functionality of the proposed methodology with nonhomogeneous lighting conditions, showcasing successful prediction of graphene layers from images that are lower in quality compared to typically published in literature. In all, the proposed methodology opens up the possibility for the non-destructive identification of graphene layers from optical images by utilizing a new and versatile method that is quick, inexpensive, and works well with fewer images that are not necessarily of high quality.

3.
Nano Lett ; 23(12): 5617-5624, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289519

RESUMO

High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe2-to-MoS2 with an interlayer hexagonal boron nitride (hBN), due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission. This type of unconventional ET from the lower-to-higher optical bandgap material is not typical in the TMD HSs. With increasing temperature, the ET process becomes weaker due to the increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.

4.
Adv Mater ; 32(36): e2002431, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700395

RESUMO

2D semiconductors, especially transition metal dichalcogenide (TMD) monolayers, are extensively studied for electronic and optoelectronic applications. Beyond intensive studies on single transistors and photodetectors, the recent advent of large-area synthesis of these atomically thin layers has paved the way for 2D integrated circuits, such as digital logic circuits and image sensors, achieving an integration level of ≈100 devices thus far. Here, a decisive advance in 2D integrated circuits is reported, where the device integration scale is increased by tenfold and the functional complexity of 2D electronics is propelled to an unprecedented level. Concretely, an analog optoelectronic processor inspired by biological vision is developed, where 32 × 32 = 1024 MoS2 photosensitive field-effect transistors manifesting persistent photoconductivity (PPC) effects are arranged in a crossbar array. This optoelectronic processor with PPC memory mimics two core functions of human vision: it captures and stores an optical image into electrical data, like the eye and optic nerve chain, and then recognizes this electrical form of the captured image, like the brain, by executing analog in-memory neural net computing. In the highlight demonstration, the MoS2 FET crossbar array optically images 1000 handwritten digits and electrically recognizes these imaged data with 94% accuracy.

5.
Nano Lett ; 20(6): 4530-4536, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32422047

RESUMO

We propose dual resonant optical sum frequency generation (SFG), where the two most singular resonances could be selected, and report for the monolayer (1L-) WSe2 when one (ω1) of two excitation pulses is resonant to A exciton and their sum frequency (ω1 + ω2) to D exciton. The dual resonant SFG confirms that, under an irradiation of ω1 and ω2 pulses with the same fluence of ∼1.4 × 1010 W/m2, its signal intensity could be enhanced about 20 times higher than the resonant SHG (i.e., 2ω1 to the D excitonic absorption). Further, the dual resonant SFG intensity of 1L-WSe2 is found to be 1 order of magnitude higher than the single resonant SFG intensity of 1L-WS2 under the same condition of two-pulse irradiation. Finally, observations of the dual resonant SFG are thoroughly examined using real-time time-dependent density functional theory (rt-TDDFT), and the relevant nonlinear optical characteristics are scrutinized using the Greenwood-Kubo formalism.

6.
Nanoscale ; 11(32): 15184-15194, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31380876

RESUMO

For decades, silicon (Si) has been widely used for the mass production of microelectronic circuits. Recently, as the thickness has been reduced to the nanometer scale, its application has expanded to various fields, including flexible and transparent 2D semiconductors. For the reliable and reproducible operation of such large flexible and transparent devices, obtaining precise information about the mechanical properties of low dimensional Si is crucial. Here, we demonstrate that a 2 nm-thick Si nanomembrane (NM) exhibits an extremely low Young's modulus of 3.25 GPa, a two-order smaller value than that of the bulk counterpart. Our systematic measurement of thickness-controlled Si NMs reveals the existence of significant size effect: The effective modulus rapidly changes from 180 GPa to 3.25 GPa under 25 nm to 2 nm thickness reduction. Our theoretical modeling successfully provides physical insight into the unique stiff-to-soft transition and extremely low modulus. We further demonstrate that the modulus of Si NMs can be tailored precisely via the control of surface morphology of membrane. This work therefore provides a comprehensive picture of how and why originally hard & stiff Si deforms so softly in the ultrathin 2D geometry, and proposes a new strategy to design the mechanical properties at nanoscale dimensions.

7.
Nano Lett ; 19(4): 2411-2417, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30896171

RESUMO

Atomically thin two-dimensional (2D) materials-such as transition metal dichalcogenide (TMD) monolayers and hexagonal boron nitride (hBN)-and their van der Waals layered preparations have been actively researched to build electronic devices such as field-effect transistors, junction diodes, tunneling devices, and, more recently, memristors. Two-dimensional material memristors built in lateral form, with horizontal placement of electrodes and the 2D material layers, have provided an intriguing window into the motions of ions along the atomically thin layers. On the other hand, 2D material memristors built in vertical form with top and bottom electrodes sandwiching 2D material layers may provide opportunities to explore the extreme of the memristive performance with the atomic-scale interelectrode distance. In particular, they may help push the switching voltages to a lower limit, which is an important pursuit in memristor research in general, given their roles in neuromorphic computing. In fact, recently Akinwande et al. performed a pioneering work to demonstrate a vertical memristor that sandwiches a single MoS2 monolayer between two inert Au electrodes, but it could neither attain switching voltages below 1 V nor control the switching polarity, obtaining both unipolar and bipolar switching devices. Here, we report a vertical memristor that sandwiches two MoS2 monolayers between an active Cu top electrode and an inert Au bottom electrode. Cu ions diffuse through the MoS2 double layers to form atomic-scale filaments. The atomic-scale thickness, combined with the electrochemical metallization, lowers switching voltages down to 0.1-0.2 V, on par with the state of the art. Furthermore, our memristor achieves consistent bipolar and analogue switching, and thus exhibits the synapse-like learning behavior such as the spike-timing dependent plasticity (STDP), the very first STDP demonstration among all 2D-material-based vertical memristors. The demonstrated STDP with low switching voltages is promising not only for low-power neuromorphic computing, but also from the point of view that the voltage range approaches the biological action potentials, opening up a possibility for direct interfacing with mammalian neuronal networks.

8.
Adv Mater ; 30(14): e1705190, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29436068

RESUMO

Understanding the collaborative behaviors of the excitons and phonons that result from light-matter interactions is important for interpreting and optimizing the underlying fundamental physics at work in devices made from atomically thin materials. In this study, the generation of exciton-coupled phonon vibration from molybdenum disulfide (MoS2 ) nanosheets in a pre-excitonic resonance condition is reported. A strong rise-to-decay profile for the transient second-harmonic generation (TSHG) of the probe pulse is achieved by applying substantial (20%) beam polarization normal to the nanosheet plane, and tuning the wavelength of the pump beam to the absorption of the A-exciton. The time-dependent TSHG signals clearly exhibit acoustic phonon generation at vibration modes below 10 cm-1 (close to the Γ point) after the photoinduced energy is transferred from exciton to phonon in a nonradiative fashion. Interestingly, by observing the TSHG signal oscillation period from MoS2 samples of varying thicknesses, the speed of the supersonic waves generated in the out-of-plane direction (Mach 8.6) is generated. Additionally, TSHG microscopy reveals critical information about the phase and amplitude of the acoustic phonons from different edge chiralities (armchair and zigzag) of the MoS2 monolayers. This suggests that the technique could be used more broadly to study ultrafast physics and chemistry in low-dimensional materials and their hybrids with ultrahigh fidelity.

9.
Small ; 12(41): 5720-5727, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27608439

RESUMO

2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics.

10.
Nanoscale ; 8(33): 15181-8, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27432242

RESUMO

Application-oriented patterned growth of transition metal dichalcogenides (TMDCs) and their heterojunctions is of critical importance for sophisticated, customized two-dimensional (2D) electronic and optoelectronic devices; however, it is still difficult to fabricate these patterns in a simple, clean, and high controllability manner without using optical lithography. Here, we report the direct synthesis of patterned MoS2 and graphene-MoS2 heterojunctions via selective plasma treatment of a SiO2/Si substrate and chemical vapor deposition of MoS2. This method has multiple merits, such as simple steps, a short operating time, easily isolated MoS2 layers with clean surfaces and controllable locations, shapes, sizes and thicknesses, which enable their integration into the device structure without using a photoresist. In addition, we demonstrate the direct growth of patterned graphene-MoS2 heterojunctions for the fabrication of transistor. This study reveals a novel method to fabricate and use patterned MoS2 and graphene-MoS2 heterojunctions, which could be generalized to the rational design of other 2D materials, heterojunctions and devices in the future.

11.
Adv Mater ; 28(22): 4184-202, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26728114

RESUMO

Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.

12.
Nat Commun ; 6: 8814, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26514372

RESUMO

Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 µJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

13.
Small ; 11(47): 6272-7, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26509495

RESUMO

Stretchable integrated circuits consisting of ultrathin Si transistors connected by multilayer graphene are demonstrated. Graphene interconnects act as an effective countervailing component to maintain the electrical performance of Si integrated circuits against external strain. Concentration of the applied strain on the graphene interconnect parts can stably protect the Si active devices against applied strains over 10%.

14.
Nano Lett ; 14(12): 6942-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375958

RESUMO

The anomalous piezoresistance (a-PZR) effects, including giant PZR (GPZR) with large magnitude and inverse PZR of opposite, have exciting technological potentials for their integration into novel nanoelectromechanical systems. However, the nature of a-PZR effect and the associated kinetics have not been clearly determined yet. Even further, there are intense research debates whether the a-PZR effect actually exists or not; although numerous investigations have been conducted, the origin of the effect has not been clearly understood. This paper shows the existence of a-PZR and provides direct experimental evidence through the performance of well-established electrical measurements and terahertz spectroscopy on silicon nanomembranes (Si NMs). The clear inverse PZR behavior was observed in the Si NMs when the thickness was less than 40 nm and the magnitude of the PZR response linearly increased with the decreasing thickness. Observations combined with electrical and optical measurements strongly corroborate that the a-PZR effect originates from the carrier concentration changes via charge carrier trapping into strain-induced defect states.

15.
Nano Lett ; 13(11): 5600-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24088052

RESUMO

Two dimensional (2D) semiconductors have attracted attention for a range of electronic applications, such as transparent, flexible field effect transistors and sensors owing to their good optical transparency and mechanical flexibility. Efforts to exploit 2D semiconductors in electronics are hampered, however, by the lack of efficient methods for their synthesis at levels of quality, uniformity, and reliability needed for practical applications. Here, as an alternative 2D semiconductor, we study single crystal Si nanomembranes (NMs), formed in large area sheets with precisely defined thicknesses ranging from 1.4 to 10 nm. These Si NMs exhibit electronic properties of two-dimensional quantum wells and offer exceptionally high optical transparency and low flexural rigidity. Deterministic assembly techniques allow integration of these materials into unusual device architectures, including field effect transistors with total thicknesses of less than 12 nm, for potential use in transparent, flexible, and stretchable forms of electronics.

16.
Nano Lett ; 11(11): 4642-6, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21973013

RESUMO

With the emergence of human interface technology, the development of new applications based on stretchable electronics such as conformal biosensors and rollable displays are required. However, the difficulty in developing semiconducting materials with high stretchability required for such applications has restricted the range of applications of stretchable electronics. Here, we present stretchable, printable, and transparent transistors composed of monolithically patterned graphene films. This material offers excellent mechanical, electrical, and optical properties, capable of use as semiconducting channels as well as the source/drain electrodes. Such monolithic graphene transistors show hole and electron mobilities of 1188 ± 136 and 422 ± 52 cm(2)/(V s), respectively, with stable operation at stretching up to 5% even after 1000 or more cycles.


Assuntos
Grafite/química , Microeletrodos , Nanoestruturas/química , Nanotecnologia/instrumentação , Transistores Eletrônicos , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura
17.
ACS Nano ; 5(6): 5107-14, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21545092

RESUMO

As an atomically thin material with low surface energy, graphene is an excellent candidate for reducing adhesion and friction when coated on various surfaces. Here, we demonstrate the superior adhesion and frictional characteristics of graphene films which were grown on Cu and Ni metal catalysts by chemical vapor deposition and transferred onto the SiO(2)/Si substrate. The graphene films effectively reduced the adhesion and friction forces, and multilayer graphene films that were a few nanometers thick had low coefficients of friction comparable to that of bulk graphite.

18.
Nanotechnology ; 21(42): 425201, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20858937

RESUMO

This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm(2) V(-1) s -1), On/Off ratio of ∼ 10(2), transmittance of ∼ 81% and excellent mechanical bendability.

19.
Nano Lett ; 10(9): 3464-6, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20704323

RESUMO

A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.

20.
Nano Lett ; 10(2): 490-3, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20044841

RESUMO

We developed means to produce wafer scale, high-quality graphene films as large as 3 in. wafer size on Ni and Cu films under ambient pressure and transfer them onto arbitrary substrates through instantaneous etching of metal layers. We also demonstrated the applications of the large-area graphene films for the batch fabrication of field-effect transistor (FET) arrays and stretchable strain gauges showing extraordinary performances. Transistors showed the hole and electron mobilities of the device of 1100 +/- 70 and 550 +/- 50 cm(2)/(V s) at drain bias of -0.75 V, respectively. The piezo-resistance gauge factor of strain sensor was approximately 6.1. These methods represent a significant step toward the realization of graphene devices in wafer scale as well as application in optoelectronics, flexible and stretchable electronics.


Assuntos
Cobre/química , Nanotecnologia/métodos , Níquel/química , Catálise , Dimetilpolisiloxanos/química , Eletrônica , Desenho de Equipamento , Grafite/química , Teste de Materiais , Nanoestruturas/química , Óptica e Fotônica , Polímeros/química , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...