Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35886387

RESUMO

The COVID-19 pandemic is recognized as one of the most serious global health problems, and many countries implemented lockdown measures to mitigate the effects of the crisis caused by this respiratory infectious disease. In this study, we investigated the relationship between social distancing policies and changes in traffic volume in Sinchon Station, South Korea. We used an official COVID-19 report provided by the Korea Disease Control and Prevention Agency (KCDA) and Seoul Metropolitan Government (SMG) to review social distancing policies, and the changes in traffic patterns before and during the COVID-19 pandemic between January 2020 and November 2021 were analyzed. Our study reveals that the changes in the overall traffic patterns from acceleration phases to deceleration phases of COVID-19 were related to the alert levels of social distancing policies implemented to tackle the situation resulting from the COVID-19 pandemic. Herein, we found that a significant decline in traffic volume took place from August to September 2020 (13.5−19.7%, weekday; 19.4−31.7%, weekend), from December 2020 to January 2021 (20.0%−26.6%, weekday; 26.8−34.0%, weekend), and from July to September 2021 (3.2−13.1%, weekday; 38.3−44.7%, weekend) when compared to the corresponding periods in 2019 (paired t-test; p < 0.001). The results of this study provide strong support for the effectiveness of Seoul's preemptive measures, namely, the central government's intensive social distancing campaign, in managing and reducing the impact of the pandemic situation based on the precise analysis of 10 types of facilities.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Humanos , Pandemias/prevenção & controle , Distanciamento Físico , Políticas , República da Coreia/epidemiologia , SARS-CoV-2
2.
Gut ; 70(12): 2249-2260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33558271

RESUMO

OBJECTIVE: Dysfunctional resolution of intestinal inflammation and altered mucosal healing are essential features in the pathogenesis of inflammatory bowel disease (IBD). Intestinal macrophages are vital in the process of inflammation resolution, but the mechanisms underlying their mucosal healing capacity remain elusive. DESIGN: We investigated the role of the prostaglandin E2 (PGE2) receptor PTGER4 on the differentiation of intestinal macrophages in patients with IBD and mouse models of intestinal inflammation. We studied mucosal healing and intestinal epithelial barrier regeneration in Csf1r-iCre Ptger4fl/fl mice during dextran sulfate sodium (DSS)-induced colitis. The effect of PTGER4+ macrophage secreted molecules was investigated on epithelial organoid differentiation. RESULTS: Here, we describe a subset of PTGER4-expressing intestinal macrophages with mucosal healing properties both in humans and mice. Csf1r-iCre Ptger4fl/fl mice showed defective mucosal healing and epithelial barrier regeneration in a model of DSS colitis. Mechanistically, an increased mucosal level of PGE2 triggers chemokine (C-X-C motif) ligand 1 (CXCL1) secretion in monocyte-derived PTGER4+ macrophages via mitogen-activated protein kinases (MAPKs). CXCL1 drives epithelial cell differentiation and proliferation from regenerating crypts during colitis. Specific therapeutic targeting of macrophages with liposomes loaded with an MAPK agonist augmented the production of CXCL1 in vivo in conditional macrophage PTGER4-deficient mice, restoring their defective epithelial regeneration and favouring mucosal healing. CONCLUSION: PTGER4+ intestinal macrophages are essential for supporting the intestinal stem cell niche and regeneration of the injured epithelium. Our results pave the way for the development of a new class of therapeutic targets to promote macrophage healing functions and favour remission in patients with IBD.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Ativação de Macrófagos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Diferenciação Celular , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Camundongos , Regeneração , Transdução de Sinais
3.
Biomolecules ; 9(7)2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337063

RESUMO

Triple-negative breast cancers (TNBCs) are hard-to-treat breast tumors with poor prognosis, which need to be treated by chemotherapy. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor involved in proliferation, metastasis, and invasion of cancer cells. Therefore, research on searching for promising compounds with metabolism that suppress phosphorylation or transcription of STAT3 in TNBC cells is important. Farfarae Flos is well known as a traditional medicine for treating inflammation. However, few studies have shown that sesquiterpenoids from Farfarae Flos have an anticancer effect. In this study, efficient separation methods and an MTT assay were conducted to isolate an anticancer compound from Farfarae Flos against TNBC MDA-MB-231 cells. Here, 7ß-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a compound isolated from Farfarae Flos showed a potent cytotoxic effect on MDA-MB-231 cells. ECN inhibited JAK-STAT3 signaling and suppressed the expression of STAT3 target genes. In addition, ECN induced apoptosis through both extrinsic and intrinsic pathways. Furthermore, we investigated that ECN inhibited the growth of tumors by intraperitoneal administration in mice injected with MDA-MB-231 cells. Therefore, ECN can be an effective chemotherapeutic agent for breast cancer treatment.


Assuntos
Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Tussilago/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/efeitos dos fármacos , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-30105068

RESUMO

Annona muricata L., known as graviola, is an evergreen plant of the tropical regions and is a rich source of natural products. Graviola has various biological activities, and it is best known for its anticancer activity. This study aimed to investigate the effects of crude graviola extract in vitro on breast cancer cells; in particular, we aimed to identify an agent against triple negative breast cancer (TNBC). We used the TNBC MDA-MB-231 cell line as the experimental model and the ER(+) non-TNBC MCF-7 breast cancer cell line as the control. We identified annonaceous acetogenins, including annonacin isomers, characteristic to this plant by using liquid chromatography tandem mass spectrometry (LC/MS/MS). We observed a significant decrease in the cell viability in both cell lines within 48 h, whereas impaired cell motility and invasiveness were observed only in the MDA-MB-231 cell line. While the MCF-7 cells showed an ER-dependent mechanism of apoptosis, the apoptosis of MDA-MB-231 cells was governed by an intrinsic apoptotic pathway triggered by graviola leaf extract (GLE).

5.
Pharmacogn Mag ; 13(Suppl 2): S170-S173, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28808376

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. OBJECTIVE: This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. MATERIAL AND METHODS: The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. RESULTS: Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 µg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 µg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. CONCLUSION: Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. SUMMARY: The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony-forming units; UPLC: Ultra-performance liquid chromatography; DAD: Diode array detector; UV: Ultraviolet; ODS: Octadecyl-silica; MS: Mass spectrometry; SE: Standard error.

6.
Nanotechnology ; 23(6): 065202, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248474

RESUMO

We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrólitos/química , Nanofios/química , Silício/química , Simulação por Computador , Desenho de Equipamento , Modelos Químicos , Semicondutores , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...