Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35207878

RESUMO

In this study, we have analysed the effects of a silane coupling agent on the volume fraction of zirconia for digital light processing (DLP)-based additive manufacturing processes. Zirconia suspension was prepared by the incorporation of silane-modified zirconia particles (experimental group) or untreated zirconia particles (control group). Furthermore, the control and experimental group were subdivided into three groups based on the volume fraction (52, 54, and 56 vol%) of zirconia particles. The disk-shaped zirconia samples were 3D (three-dimensional) printed using the DLP technique and their physical and mechanical properties were evaluated. The addition of a silane coupling agent to the zirconia samples was found to have influence of about 6% on the hardness and biaxial flexural strength. Moreover, the decrease in minute air gaps inside the zirconia layers significantly increased the material density (visualized from the microstructure analysis). Thus, from this study, it was established that the silane-modified zirconia particles had a positive effect on the physical properties of the zirconia parts.

2.
Mater Sci Eng C Mater Biol Appl ; 123: 111950, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812579

RESUMO

For the formation of new bone in critical-sized bone defects, bioactive scaffolds with an interconnected porous network are necessary. Herein, we fabricated three-dimensional (3D) porous hybrid zirconia scaffolds to promote hybrid functionality, i.e., excellent mechanical properties and bioactive performance. Specifically, the 3D printed scaffolds were subjected to Zn-HA/glass composite coating on glass-infiltrated zirconia (ZC). In addition, to pertain the extracellular matrix of bone, biopolymer (alginate/gelatine) was embedded in a developed 3D construct (ZB and ZCB). A zirconia-printed scaffold (Z) group served as a control. The structural and mechanical properties of the constructed scaffolds were studied using essential characterization techniques. Furthermore, the biological performance of the designed scaffolds was tested by a sequence of in vitro cell tests, including the attachment, proliferation, and osteogenic differentiation of dental pulp cells (DPCs). The ZC and ZCB scaffolds exhibited 20% higher compression strength than the zirconia (Z) scaffolds. More importantly, the ZC constructs exhibited superior cell-adhesion, distribution, and osteogenic differentiation ability due to the synergistic effects of the composite coating. In addition, the biopolymer-embedded scaffolds (ZB, ZCB) showed an excellent biological and mechanical performance. Thus, our results suggest that the Zn-HA/glass composite-coated glass-infiltrated zirconia (ZC, ZCB) scaffolds are a dynamic approach to designing bioactive 3D scaffolds for the load-bearing bone regeneration applications.


Assuntos
Osteogênese , Engenharia Tecidual , Regeneração Óssea , Porosidade , Alicerces Teciduais , Zircônio
3.
J Nanosci Nanotechnol ; 20(9): 5520-5524, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331129

RESUMO

45S5 bioactive glass (45S5) scaffolds were fabricated using a novel additive-manufacturing (AM) technology. A ceramic injection printer (CIP) was designed by combining injection molding and fused deposition modeling, for the fabrication of three-dimensional constructs of ceramic materials. A high fraction (50 vol%) of 45S5 powder was mixed with the thermoplastic polymer. The synthesized 45S5 composites were subjected to Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). The BET results of prepared 45S5 powder were confirmed to have a mean pore diameter of 11.402 nm, and specific surface area is 0.966 m²/g. The prepared 45S5/thermoplastic composite powder was subjected to Thermogravimetric/Differential thermal analysis (TG/DTA). The debinding process of polymer occurred at 192.5, 360.8, and 393 °C. The elastic modulus and ultimate stress of these scaffolds were measured to be 312.49±87.36 MPa and 21.83±6.67 MPa, respectively. The XRD results revealed the presence of Na6Ca3Si6O18 phases. The presence of Si, Ca, P, and Na was confirmed via energy-dispersive X-ray spectroscopy (EDS). The printed scaffold exhibited amorphous calcium phosphate (ACP) expression after immersion in simulated body fluid (SBF) and also it was observed that the intensity of the crystalline phase of 45S5 was decreased, as the immersion time increases. Bioactive glass composites with the high volume fraction can be able to construct 3D complex porous scaffolds using CIP.

4.
J Nanosci Nanotechnol ; 20(9): 5676-5679, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331157

RESUMO

In this study, the wear behavior of glazed zirconia was investigated to the antagonist with human enamel after simulated mastication. Twenty Y-TZP specimens were divided into 4 groups: untreated zirconia (Z), glazed zirconia with IPS e.max Ceram (GZE), glazed zirconia with VITA AKZENT® Plus (GZV), and glazed zirconia with glass (GZG). Glazing glass was mainly composed of SiO2, B2O3, Al2O3, Na2O and K2O (nearly 91 wt%). The surface roughness of the specimens was evaluated using roughness profiler. The maxillary premolar teeth were selected as the antagonist. The wear of human enamel against human enamel was used as a control. Five-disc specimens per group were subjected to chewing stimulation CS-4 (SD Mechatronic GmbH, Germany) for 240,000 cycles against human enamel. The wear loss of antagonistic teeth was calculated using a three-dimensional profiling system and the volume loss of the tooth was scanned using a 3D scanner. 3D data obtained before and after testing were overlapped using 3D software (Dentacian Software, EZplant, Korea). The wear loss of glazed zirconia GZE, GZV and GZG groups showed significantly lower than that of human enamel. Whereas, the zirconia (Z) group exhibits significantly lower volume loss than glazed zirconia and enamel. These results show that the wear of the glazing glass is comparable to other commercial glazing materials. Glazing materials are both more susceptible to wear the antagonist relative to zirconia.


Assuntos
Dióxido de Silício , Zircônio , Esmalte Dentário , Humanos , Teste de Materiais , Propriedades de Superfície
5.
Micromachines (Basel) ; 11(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155781

RESUMO

We evaluated the effect of electron beam (E-beam) sterilization (25 kGy, ISO 11137) on the degradation of ß-tricalcium phosphate/polycaprolactone (ß-TCP/PCL) composite filaments of various ratios (0:100, 20:80, 40:60, and 60:40 TCP:PCL by mass) in a rat subcutaneous model for 24 weeks. Volumes of the samples before implantation and after explantation were measured using micro-computed tomography (micro-CT). The filament volume changes before sacrifice were also measured using a live micro-CT. In our micro-CT analyses, there was no significant difference in volume change between the E-beam treated groups and non-E-beam treated groups of the same ß-TCP to PCL ratios, except for the 0% ß-TCP group. However, the average volume reduction differences between the E-beam and non-E-beam groups in the same-ratio samples were 0.76% (0% TCP), 3.30% (20% TCP), 4.65% (40% TCP), and 3.67% (60% TCP). The E-beam samples generally had more volume reduction in all experimental groups. Therefore, E-beam treatment may accelerate degradation. In our live micro-CT analyses, most volume reduction arose in the first four weeks after implantation and slowed between 4 and 20 weeks in all groups. E-beam groups showed greater volume reduction at every time point, which is consistent with the results by micro-CT analysis. Histology results suggest the biocompatibility of TCP/PCL composite filaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...