Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(11): 7247-7261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35754384

RESUMO

PURPOSE: It is important to fully automate the evaluation of gadoxetate disodium-enhanced arterial phase images because the efficient quantification of transient severe motion artifacts can be used in a variety of applications. Our study proposes a fully automatic evaluation method of motion artifacts during the arterial phase of gadoxetate disodium-enhanced MR imaging. METHODS: The proposed method was based on the construction of quality-aware features to represent the motion artifact using MR image statistics and multidirectional filtered coefficients. Using the quality-aware features, the method calculated quantitative quality scores of gadoxetate disodium-enhanced images fully automatically. The performance of our proposed method, as well as two other methods, was acquired by correlating scores against subjective scores from radiologists based on the 5-point scale and binary evaluation. The subjective scores evaluated by two radiologists were severity scores of motion artifacts in the evaluation set on a scale of 1 (no motion artifacts) to 5 (severe motion artifacts). RESULTS: Pearson's linear correlation coefficient (PLCC) and Spearman's rank-ordered correlation coefficient (SROCC) values of our proposed method against the subjective scores were 0.9036 and 0.9057, respectively, whereas the PLCC values of two other methods were 0.6525 and 0.8243, and the SROCC values were 0.6070 and 0.8348. Also, in terms of binary quantification of transient severe respiratory motion, the proposed method achieved 0.9310 sensitivity, 0.9048 specificity, and 0.9200 accuracy, whereas the other two methods achieved 0.7586, 0.8996 sensitivities, 0.8098, 0.8905 specificities, and 0.9200, 0.9048 accuracies CONCLUSIONS: This study demonstrated the high performance of the proposed automatic quantification method in evaluating transient severe motion artifacts in arterial phase images.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Automação
2.
PLoS One ; 16(4): e0249399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857181

RESUMO

OBJECTIVE: The chest X-ray (CXR) is the most readily available and common imaging modality for the assessment of pneumonia. However, detecting pneumonia from chest radiography is a challenging task, even for experienced radiologists. An artificial intelligence (AI) model might help to diagnose pneumonia from CXR more quickly and accurately. We aim to develop an AI model for pneumonia from CXR images and to evaluate diagnostic performance with external dataset. METHODS: To train the pneumonia model, a total of 157,016 CXR images from the National Institutes of Health (NIH) and the Korean National Tuberculosis Association (KNTA) were used (normal vs. pneumonia = 120,722 vs.36,294). An ensemble model of two neural networks with DenseNet classifies each CXR image into pneumonia or not. To test the accuracy of the models, a separate external dataset of pneumonia CXR images (n = 212) from a tertiary university hospital (Gachon University Gil Medical Center GUGMC, Incheon, South Korea) was used; the diagnosis of pneumonia was based on both the chest CT findings and clinical information, and the performance evaluated using the area under the receiver operating characteristic curve (AUC). Moreover, we tested the change of the AI probability score for pneumonia using the follow-up CXR images (7 days after the diagnosis of pneumonia, n = 100). RESULTS: When the probability scores of the models that have a threshold of 0.5 for pneumonia, two models (models 1 and 4) having different pre-processing parameters on the histogram equalization distribution showed best AUC performances of 0.973 and 0.960, respectively. As expected, the ensemble model of these two models performed better than each of the classification models with 0.983 AUC. Furthermore, the AI probability score change for pneumonia showed a significant difference between improved cases and aggravated cases (Δ = -0.06 ± 0.14 vs. 0.06 ± 0.09, for 85 improved cases and 15 aggravated cases, respectively, P = 0.001) for CXR taken as a 7-day follow-up. CONCLUSIONS: The ensemble model combined two different classification models for pneumonia that performed at 0.983 AUC for an external test dataset from a completely different data source. Furthermore, AI probability scores showed significant changes between cases of different clinical prognosis, which suggest the possibility of increased efficiency and performance of the CXR reading at the diagnosis and follow-up evaluation for pneumonia.


Assuntos
Inteligência Artificial , Pneumonia/diagnóstico , Tórax/diagnóstico por imagem , Adulto , Idoso , Área Sob a Curva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Centros de Atenção Terciária , Tomografia Computadorizada por Raios X
3.
Magn Reson Med ; 84(6): 2994-3008, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32479671

RESUMO

PURPOSE: To generate short tau, or short inversion time (TI), inversion recovery (STIR) images from three multi-contrast MR images, without additional scanning, using a deep neural network. METHODS: For simulation studies, we used multi-contrast simulation images. For in-vivo studies, we acquired knee MR images including 288 slices of T1 -weighted (T1 -w), T2 -weighted (T2 -w), gradient-recalled echo (GRE), and STIR images taken from 12 healthy volunteers. Our MR image synthesis method generates a new contrast MR image from multi-contrast MR images. We used a deep neural network to identify the complex relationships between MR images that show various contrasts for the same tissues. Our contrast-conversion deep neural network (CC-DNN) is an end-to-end architecture that trains the model to create one image from three (T1 -w, T2 -w, and GRE images). We propose a new loss function to take into account intensity differences, misregistration, and local intensity variations. The CC-DNN-generated STIR images were evaluated with four quantitative evaluation metrics, including mean squared error, peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and multi-scale SSIM (MS-SSIM). Furthermore, a subjective evaluation was performed by musculoskeletal radiologists. RESULTS: Our method showed improved results in all quantitative evaluations compared with other methods and received the highest scores in subjective evaluations by musculoskeletal radiologists. CONCLUSION: This study suggests the feasibility of our method for generating STIR sequence images without additional scanning that offered a potential alternative to the STIR pulse sequence when additional scanning is limited or STIR artifacts are severe.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Razão Sinal-Ruído
4.
Sci Rep ; 9(1): 11708, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406206

RESUMO

We recently generated a high-resolution supratentorial vascular topographic atlas using diffusion-weighed MRI in a population of large artery infarcts. These MRI-based topographic maps are not easily applicable to CT scans, because the standard-reference-lines for axial image orientation (i.e., anterior-posterior commissure line versus orbito-meatal line, respectively) are 'not parallel' to each other. Moreover, current, widely-used CT-based vascular topographic diagrams omit demarcation of the inter-territorial border-zones. Thus, we aimed to generate a CT-specific high-resolution atlas, showing the supratentorial cerebrovascular territories and the inter-territorial border-zones in a statistically rigorous way. The diffusion-weighted MRI lesion atlas is based on 1160 patients (67.0 ± 13.3 years old, 53.7% men) with acute (<1-week) cerebral infarction due to significant (>50%) stenosis or occlusion of a single large cerebral artery: anterior, middle, or posterior cerebral artery. We developed a software package enabling the transformation of our MR-based atlas into a re-oriented CT space corresponding to the axial slice orientations used in clinical practice. Infarct volumes are individually mapped to the three vascular territories on the CT template-set, generating brain maps showing the voxelwise frequency of infarct by the affected parent vessel. We then mapped the three vascular territories collectively, generating a dataset of Certainty-Index (CI) maps to reflect the likelihood of a voxel being a member of a specific vascular territory. Border-zones could be defined by using either relative infarct frequencies or CI differences. The topographic vascular territory atlas, revised for CT, will allow for easier and more accurate delineation of arterial territories and borders on CT images.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Infarto da Artéria Cerebral Anterior/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Posterior/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Mapeamento Encefálico/instrumentação , Artérias Cerebrais/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Infarto da Artéria Cerebral Anterior/patologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Posterior/patologia , Masculino , Pessoa de Meia-Idade , Software , Tomografia Computadorizada por Raios X/métodos
5.
Magn Reson Med ; 80(5): 2188-2201, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29624729

RESUMO

PURPOSE: To demonstrate accurate MR image reconstruction from undersampled k-space data using cross-domain convolutional neural networks (CNNs) METHODS: Cross-domain CNNs consist of 3 components: (1) a deep CNN operating on the k-space (KCNN), (2) a deep CNN operating on an image domain (ICNN), and (3) an interleaved data consistency operations. These components are alternately applied, and each CNN is trained to minimize the loss between the reconstructed and corresponding fully sampled k-spaces. The final reconstructed image is obtained by forward-propagating the undersampled k-space data through the entire network. RESULTS: Performances of K-net (KCNN with inverse Fourier transform), I-net (ICNN with interleaved data consistency), and various combinations of the 2 different networks were tested. The test results indicated that K-net and I-net have different advantages/disadvantages in terms of tissue-structure restoration. Consequently, the combination of K-net and I-net is superior to single-domain CNNs. Three MR data sets, the T2 fluid-attenuated inversion recovery (T2 FLAIR) set from the Alzheimer's Disease Neuroimaging Initiative and 2 data sets acquired at our local institute (T2 FLAIR and T1 weighted), were used to evaluate the performance of 7 conventional reconstruction algorithms and the proposed cross-domain CNNs, which hereafter is referred to as KIKI-net. KIKI-net outperforms conventional algorithms with mean improvements of 2.29 dB in peak SNR and 0.031 in structure similarity. CONCLUSION: KIKI-net exhibits superior performance over state-of-the-art conventional algorithms in terms of restoring tissue structures and removing aliasing artifacts. The results demonstrate that KIKI-net is applicable up to a reduction factor of 3 to 4 based on variable-density Cartesian undersampling.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...