Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209448

RESUMO

A number of research attempts to understand and modulate sensory and motor skills that are beyond the capability of humans have been underway. They have mainly been expounded in rodent models, where numerous reports of controlling movement to reach target locations by brain stimulation have been achieved. However, in the case of birds, although basic research on movement control has been conducted, the brain nuclei that are triggering these movements have yet to be established. In order to fully control flight navigation in birds, the basic central nervous system involved in flight behavior should be understood comprehensively, and functional maps of the birds' brains to study the possibility of flight control need to be clarified. Here, we established a stable stereotactic surgery to implant multi-wire electrode arrays and electrically stimulated several nuclei of the pigeon's brain. A multi-channel electrode array and a wireless stimulation system were implanted in thirteen pigeons. The pigeons' flight trajectories on electrical stimulation of the cerebral nuclei were monitored and analyzed by a 3D motion tracking program to evaluate the behavioral change, and the exact stimulation site in the brain was confirmed by the postmortem histological examination. Among them, five pigeons were able to induce right and left body turns by stimulating the nuclei of the tractus occipito-mesencephalicus (OM), nucleus taeniae (TN), or nucleus rotundus (RT); the nuclei of tractus septo-mesencephalicus (TSM) or archistriatum ventrale (AV) were stimulated to induce flight aviation for flapping and take-off with five pigeons.

2.
ACS Sens ; 6(7): 2728-2737, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34236857

RESUMO

Ensembles of autonomous, spatially distributed wireless stimulators can offer a versatile approach to patterned microstimulation of biological circuits such as the cortex. Here, we demonstrate the concept of a distributed, untethered, and addressable microstimulator, integrating an ultraminiaturized ASIC with a custom-designed GaAs photovoltaic (PV) microscale energy harvester, dubbed as an "optical neurograin (ONG)". An on-board Manchester-encoded near-infrared downlink delivers incident IR power and provides a synchronous clock across an ensemble of microdevices, triggering stimulus events by remote command. Each ONG has a unique device address and, when an incoming downlink bit sequence matches with this device identification (ID), the implant delivers a charge-balanced current stimulus to the target cortex. Present devices use 7-bit metal fuses fabricated during the CMOS process for their device ID, laser-scribed in post-processing, allowing in principle for a stimulator network of up to 128 nodes. We have characterized small ensembles of ONGs and shown a proof of concept of the system both on benchtop and in vivo rat rodent model.


Assuntos
Luz , Próteses e Implantes , Animais , Ratos
3.
Neurosurg Focus ; 49(1): E10, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610289

RESUMO

OBJECTIVE: The authors' goal was to study avian motor brain mapping via wireless stimulation to induce certain behaviors. In this paper, the authors propose an electrode design that is suitable for avian brain stimulation as well as a stereotactic implant procedure for the proposed electrode. METHODS: An appropriate breed for avian brain study was chosen. A fully implantable remote-controlled electrical stimulation system was inserted to minimize discomfort. A suitable electrode design and stereotactic surgery method based on the electrode design were investigated. RESULTS: Using a wireless stimulation system, flapping and rotation behaviors were induced by stimulating the ventral part of the nucleus intercollicularis and formatio reticularis medialis mesencephali both on the ground and during flight. CONCLUSIONS: The authors were able to implant the entire brain stimulation system inside the avian body without any surgical complications. Postoperative observations suggested that the bird did not find the implant uncomfortable.


Assuntos
Encéfalo/fisiologia , Encéfalo/cirurgia , Estimulação Encefálica Profunda , Técnicas Estereotáxicas , Animais , Aves , Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/métodos , Estimulação Elétrica/métodos , Eletrodos Implantados , Humanos , Imageamento Tridimensional
4.
Biomed Mater Eng ; 30(5-6): 497-507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31640081

RESUMO

BACKGROUND: Animal learning based on brain stimulation is an application in a brain-computer interface. Especially for birds, such a stimulation system should be sufficiently light without interfering with movements of wings. OBJECTIVE: We proposed a fully-implantable system for wirelessly navigating a pigeon. In this paper, we report a handheld neural stimulation controller for this avian navigation guided by remote control. METHODS: The handheld controller employs ZigBee to control pigeon's behaviors through brain stimulation. ZigBee can manipulate brain stimulation remotely while powered by batteries. Additionally, simple switches enable users to customize parameters of stimuli like a gamepad. These handheld and user-friendly interfaces make it easy to use the controller while a pigeon flies in open areas. RESULTS: An electrode was inserted into a nucleus (formatio reticularis medialis mesencephalic) of a pigeon and connected to a stimulator fully-implanted in the pigeon's back. Receiving signals sent from the controller, the stimulator supplied biphasic pulses with a duration of 0.080 ms and an amplitude of 0.400 mA to the nucleus. When the nucleus was stimulated, a 180-degree turning-left behavior of the pigeon was consistently observed. CONCLUSIONS: The feasibility of remote avian navigation using the controller was successfully verified.


Assuntos
Computadores de Mão , Eletrodos Implantados/veterinária , Voo Animal/fisiologia , Orientação Espacial/fisiologia , Tecnologia sem Fio/instrumentação , Animais , Interfaces Cérebro-Computador , Columbidae/fisiologia , Fontes de Energia Elétrica , Estimulação Elétrica , Eletrodos , Desenho de Equipamento , Estudos de Viabilidade , Sistemas de Informação Geográfica/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/veterinária , Robótica/instrumentação , Robótica/métodos , Navegação Espacial/fisiologia
5.
Chem Commun (Camb) ; 55(22): 3195-3198, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30698575

RESUMO

A phase transfer-mediated ligand exchange method is developed for highly selective and rapid synthesis of colloidal phospholipid bilayer-coated gold nanocrystals. The complete replacement of strongly bound surface ligands such as cetyltrimethylammonium bromide (CTAB) and citrate by phospholipid bilayer can be quickly achieved by water-chloroform phase transfer.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5310-5313, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947055

RESUMO

Navigation of freely moving animals has been studied for potential application to emergency situations and hazardous environments. A fully implantable stimulation system for remote animal navigation was proposed and applied to living pigeons. The animal navigation system, consisting of an external controller and a neural stimulator, was designed based on the anatomy of the pigeons. Depth electrodes were fabricated based on the anatomy of target pigeon brain regions. The fabricated neural stimulators received data wirelessly from the external controller and generated biphasic current pulses with preset parameters of amplitude, duration, and rate. The average impedance of the fabricated electrodes was 12.0∠-13.05° kΩ at 1 kHz. The neural stimulator was implanted on the dorsal side, and the depth electrodes were inserted into the formatio reticularis medialis mesencephali (FRM). When successive current pulses with an amplitude of 400 µA, a rate of 58 Hz, and a duration of 80 µs were applied to the target regions at 0.85 s intervals, turning/circling behaviors were induced for 6.2 s. The feasibility of the proposed wireless stimulation system was demonstrated in vivo.


Assuntos
Columbidae , Estimulação Elétrica , Eletrodos Implantados , Tecnologia sem Fio , Animais , Encéfalo , Impedância Elétrica
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1871-1874, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440761

RESUMO

This paper describes the electrical modulation of locomotion in pigeons using deep brain electrodes. Polymer-based depth electrodes with four channels were fabricated. Based on the location of the nucleus intercollicularis (ICo), the shanks of the depth electrodes were designed to be a length of 11 mm. After the implantation of the depth electrode into the ICo region of the brain, it was connected by wires to a custom-made stimulator, and biphasic current pulses were delivered. Current pulses with an amplitude of 0.5 mA, a rate of 58.0 Hz, and a duration of $320\mu \mathrm{s} $s were applied for 0.5 s. When the ICo region was electrically stimulated, taking-off behavior was successfully induced for 0.4 s. Induction of taking-off behavior by electrical stimulation, when coupled to control of turning and running forward locomotions, may contribute to the development of remote flight-control system of freely moving pigeon.


Assuntos
Encéfalo/fisiologia , Columbidae/fisiologia , Eletrodos Implantados , Locomoção , Animais , Estimulação Elétrica , Polímeros
8.
Korean J Fam Med ; 34(2): 107-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23560209

RESUMO

BACKGROUND: Sleep disorder is a common problem in adults and affects physical and mental health. We investigated factors associated with poor sleep quality in Korean primary care. METHODS: A total of 129 couples (129 husbands and 129 wives) aged 30 to 79 years were included in this study from March, 2009 to February, 2010. The subjects were surveyed using a specific questionnaire. Sleep disorder was defined by a Pittsburgh Sleep Quality Index global score greater than 5 (poor sleepers). The subjects were divided into a group of good sleepers (n = 160) and a group of poor sleepers (n = 98). Socio-demographic and clinical covariates including age, sex, depression, spouse sleep disorder, and spouse depression were reported. RESULTS: Poor sleep quality was present in 38.0% of total subjects. According to chi-square test results, female, patients with depression, and low sleep quality of spouse were significantly associated with sleep disorder. In multivariate logistic regression analysis, depression increased the risk of poor sleep quality (odds ratio [OR], 7.775; 95% confidence interval [CI], 2.555 to 23.661), and non-risky drinking decreased the risk of poor sleep quality (OR, 0.343; 95% CI, 0.128 to 0.924). CONCLUSION: In our study, more than one-third of participants had poor sleep quality. Depression was a strong independent factor associated with sleep problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...