Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(4): 1622-1633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726284

RESUMO

Tribbles pseudokinase 3 (TRIB3), a member of the mammalian Tribbles family, is implicated in multiple biological processes. This study aimed to investigate the biological functions of TRIB3 in lung cancer and its effect on amino acid-deprived lung cancer cells. TRIB3 mRNA expression was elevated in lung cancer tissues and cell lines compared to normal lung tissues and cells. TRIB3 knockdown markedly reduced the viability and proliferation of H1299 lung cancer cells. Deprivation of amino acids, particularly arginine, glutamine, lysine, or methionine, strongly increased TRIB3 expression via ATF4 activation in H1299 lung cancer cells. Knockdown of TRIB3 led to transcriptional downregulation of ATF4 and reduced AKT activation induced by amino acid deprivation, ultimately increasing the sensitivity of H1299 lung cancer cells to amino acid deprivation. Additionally, TRIB3 knockdown enhanced the sensitivity of H1299 cells to V-9302, a competitive antagonist of transmembrane glutamine flux. These results suggest that TRIB3 is a pro-survival regulator of cell viability in amino acid-deficient tumor microenvironments and a promising therapeutic target for lung cancer treatment.

2.
Am J Cancer Res ; 14(3): 1087-1100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590408

RESUMO

Although epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been effective targeted therapies for non-small cell lung cancer (NSCLC), most advanced NSCLC inevitably develop resistance to these therapies. Combination therapies emerge as valuable approach to preventing, delaying, or overcoming disease progression. Duloxetine, an antidepressant known as a serotonin-noradrenaline reuptake inhibitor, is commonly prescribed for the treatment of chemotherapy-induced peripheral neuropathy. In the present study, we investigated the combined effects of duloxetine and EGFR-TKIs and their possible mechanism in NSCLC cells. Compared with either monotherapy, the combination of duloxetine and EGFR-TKIs leads to synergistic cell death. Mechanistically, duloxetine suppresses 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) activity through mechanistic target of rapamycin complex 1 (mTORC1), and this effect is associated with the synergistic induction of cell death of duloxetine combined with EGFR-TKIs. More importantly, activating transcription factor 4 (ATF4)-induced regulated in development and DNA damage response 1 (REDD1) is responsible for the suppression of mTORC1/S6K1 activation. Additionally, we found that the combination effect was significantly attenuated in REDD1 knockout NSCLC cells. Taken together, our findings reveal that the ATF4/REDD1/mTORC1/S6K1 signaling axis, as a novel mechanism, is responsible for the synergistic therapeutic effect of duloxetine with EGFR-TKIs. These results suggest that combining EGFR-TKIs with duloxetine appears to be a promising way to improve EGFR-TKI efficacy against NSCLC.

3.
IUBMB Life ; 76(4): 212-222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38054509

RESUMO

Thioredoxin-interacting protein (TXNIP) is sensitive to oxidative stress and is involved in the pathogenesis of various metabolic, cardiovascular, and neurodegenerative disorders. Therefore, several studies have suggested that TXNIP is a promising therapeutic target for several diseases, particularly cancer and diabetes. However, the regulation of TXNIP expression under amino acid (AA)-restricted conditions is not well understood. In the present study, we demonstrated that TXNIP expression was promoted by the deprivation of AAs, especially arginine, glutamine, lysine, and methionine, in non-small cell lung cancer (NSCLC) cells. Interestingly, we determined that increased TXNIP expression induced by AA deprivation was associated with nuclear factor erythroid 2-related factor 2 (NRF2) downregulation, but not with activating transcription factor 4 (ATF4) activation. Furthermore, N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), suppressed TXNIP expression in NSCLC cells deprived of AA. Collectively, the induction of TXNIP expression by AA deprivation was mediated by ROS production, potentially through NRF2 downregulation. Our findings suggest that TXNIP expression may be associated with the redox homeostasis of AA metabolism and provide a possible rationale for a therapeutic strategy to treat cancer with AA restriction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Aminoácidos/metabolismo , Regulação para Baixo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
4.
Anticancer Res ; 43(5): 1973-1980, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097659

RESUMO

BACKGROUND/AIM: The fibroblast growth factor receptor (FGFR) signaling pathway is abnormally activated in human cancers, including breast cancer. Therefore, targeting the FGFR signaling pathway is a potent strategy to treat breast cancer. The purpose of this study was to find drugs that could increase sensitivity to FGFR inhibitor effects in BT-474 breast cancer cells, and to investigate the combined effects and underlying mechanisms of these combinations for BT-474 breast cancer cell survival. MATERIALS AND METHODS: Cell viability was measured by MTT assay. Protein expression was determined by western blot analysis. mRNA expression was detected by Real-time PCR. Drug synergy effect was determined by isobologram analysis. RESULTS: Nebivolol, a third generation ß1-blocker, synergistically increased the sensitivity of BT-474 breast cancer cells to the potent and selective FGFR inhibitors erdafitinib (JNJ-42756493) and AZD4547. A combination of nebivolol and erdafitinib markedly reduced AKT activation. Suppression of AKT activation using specific siRNA and a selective inhibitor further enhanced cell sensitivity to combined treatment with nebivolol and erdafitinib, whereas SC79, a potent activator of AKT, reduced cell sensitivity to nebivolol and erdafitinib. CONCLUSION: Enhanced sensitivity of BT-474 breast cancer cells to nebivolol and erdafitinib was probably associated with down-regulation of AKT activation. Combined treatment with nebivolol and erdafitinib is a promising strategy for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Nebivolol/farmacologia , Nebivolol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral
5.
J Breast Cancer ; 25(5): 387-403, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36314765

RESUMO

PURPOSE: Phosphorylated AKT1 (p-AKT1) at Ser473 is a functional isoform of AKT and a key component of the PI3K/mTOR/AKT pathway. This study aimed to evaluate the prognostic significance of p-AKT1 (Ser473) based on the molecular subtypes of breast cancer. METHODS: To investigate the prognostic value of p-AKT1 (Ser473), we performed a retrospective chart review of patients with breast cancer. Data on p-AKT1 (Ser473) positivity, hormone receptor (HR) status, human epidermal growth factor receptor 2 (HER2) expression status, and other clinicopathological factors were obtained. Furthermore, the therapeutic effect of blocking p-AKT1 (Ser473) in breast cancer cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis assay, apoptosis protein array, and western blot analysis. RESULTS: A total of 3,044 patients were evaluated, and the median follow-up time was 43 (range: 0-125) months. In patients with HR-positive and HER2-positive disease, the p-AKT1 (Ser473)-positive group had worse disease-free survival (DFS) than the p-AKT1 (Ser473)-negative group (hazard ratio, 1.9; 95% confidence interval, 1.1-3.5; p = 0.024). In the multivariate analysis, p-AKT1 (Ser473) remained a significantly worse prognostic factor in patients with HR-positive/HER2-positive breast cancer (p = 0.03). There was no difference in DFS according to p-AKT1 (Ser473) status among patients with other breast cancer subgroups. In vitro analysis showed that blocking p-AKT1 (Ser473) levels enhanced trastuzumab-induced cell death in HR-positive/HER2-positive and p-AKT1 (Ser473)-positive breast cancer cells. CONCLUSION: p-AKT1 (Ser473) is a prognostic marker for poor outcomes in patients with HR-positive/HER2-positive breast cancer and may have a potential value as a therapeutic target.

6.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955892

RESUMO

Ovarian cancer is a carcinoma that affects women and that has a high mortality rate. Overcoming paclitaxel resistance is important for clinical application. However, the effect of amino acid metabolism regulation on paclitaxel-resistant ovarian cancer is still unknown. In this study, the effect of an amino acid-deprived condition on paclitaxel resistance in paclitaxel-resistant SKOV3-TR cells was analyzed. We analyzed the cell viability of SKOV3-TR in culture conditions in which each of the 20 amino acids were deprived. As a result, the cell viability of the SKOV3-TR was significantly reduced in cultures deprived of arginine, glutamine, and lysine. Furthermore, we showed that the glutamine-deprived condition inhibited mTORC1/S6K signaling. The decreased cell viability and mTORC1/S6K signaling under glutamine-deprived conditions could be restored by glutamine and α-KG supplementation. Treatment with PF-4708671, a selective S6K inhibitor, and the selective glutamine transporter ASCT2 inhibitor V-9302 downregulated mTOR/S6K signaling and resensitized SKOV3-TR to paclitaxel. Immunoblotting showed the upregulation of Bcl-2 phosphorylation and a decrease in Mcl-1 expression in SKOV3-TR via the cotreatment of paclitaxel with PF-4708671 and V-9302. Collectively, this study demonstrates that the inhibition of glutamine uptake can resensitize SKOV3-TR to paclitaxel and represents a promising therapeutic target for overcoming paclitaxel resistance in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Glutamina/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
7.
Anticancer Res ; 42(7): 3475-3481, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35790270

RESUMO

BACKGROUND/AIM: Metformin is a widely used drug for type 2 diabetes mellitus and has recently attracted broad attention for its therapeutic effects on many cancers. This study aimed to investigate the molecular mechanism of metformin's anticancer activity. MATERIALS AND METHODS: Cell viability was measured by MTT assay. Gene and protein expression levels were determined by reverse transcription-polymerase chain reaction and western blot analyses, respectively. RESULTS: Metformin and phenformin markedly induced NUPR1 expression in a dose- and time-dependent manner in H1299 non-small-cell lung cancer (NSCLC) cells. The silencing of NUPR1 in H1299 NSCLC cells enhanced cell sensitivity to metformin or ionizing radiation. Our previous report showed that metformin induces AKT serine/threonine kinase (AKT) activation in an activating transcription factor 4 (ATF4)-dependent manner and that the inhibition of AKT promotes cell sensitivity to metformin in H1299 NSCLC cells. Interestingly, ATF4-induced AKT activation in H1299 NSCLC cells treated with metformin was suppressed by the knockdown of NUPR1. CONCLUSION: Targeting NUPR1 could enhance the sensitivity of H1299 NSCLC cells to metformin by AKT inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Metformina , Fator 4 Ativador da Transcrição , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metformina/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética
8.
Biochem Biophys Res Commun ; 601: 73-78, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35231654

RESUMO

Although endocrine therapy with tamoxifen has improved survival in breast cancer patients, resistance to this therapy remains one of the major causes of breast cancer mortality. In the present study, we found that the expression level of YAP/TAZ in tamoxifen-resistant MCF7 (MCF7-TR) breast cancer cells was significantly increased compared with that in MCF7 cells. Knockdown of YAP/TAZ with siRNA sensitized MCF7-TR cells to tamoxifen. Furthermore, siRNA targeting PSAT1, a downstream effector of YAP/TAZ, enhanced sensitivity to tamoxifen in MCF7-TR cells. Additionally, mTORC1 activity and survivin expression were significantly decreased during cell death induced by combination treatment with YAP/TAZ or PSAT1 siRNA and tamoxifen. In conclusion, targeting the YAP/TAZ-PSAT1 axis could sensitize tamoxifen-resistant MCF7 breast cancer cells by modulating the mTORC1-survivin axis.


Assuntos
Neoplasias da Mama , Tamoxifeno , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , RNA Interferente Pequeno , Survivina/genética , Tamoxifeno/farmacologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo
9.
Cell Death Dis ; 12(12): 1127, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862383

RESUMO

Amino acid availability is sensed by various signaling molecules, including general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). However, it is unclear how these sensors are associated with cancer cell survival under low amino acid availability. In the present study, we investigated AKT activation in non-small cell lung cancer (NSCLC) cells deprived of each one of 20 amino acids. Among the 20 amino acids, deprivation of glutamine, arginine, methionine, and lysine induced AKT activation. AKT activation was induced by GCN2/ATF4/REDD1 axis-mediated mTORC2 activation under amino acid deprivation. In CRISPR-Cas9-mediated REDD1-knockout cells, AKT activation was not induced by amino acid deprivation, indicating that REDD1 plays a major role in AKT activation under amino acid deprivation. Knockout of REDD1 sensitized cells cultured under glutamine deprivation conditions to radiotherapy. Taken together, GCN2/ATF4/REDD1 axis induced by amino acid deprivation promotes cell survival signal, which might be a potential target for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Glutamina , Humanos , Neoplasias Pulmonares/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Anticancer Res ; 41(12): 6169-6176, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848471

RESUMO

BACKGROUND/AIM: Rictor is an adaptor protein essential for mTORC2, which regulates cell growth and survival. The aim of this study was to identify microRNAs (miR) that down-regulate Rictor and investigate their function on breast cancer cell survival. MATERIALS AND METHODS: Trypan blue assay, MTT assay, polymerase chain reaction analysis, luciferase reporter assay and western blot analysis were carried out in breast cancer cell lines HCC1954, MDA-MB-231, SK-BR-3, and BT474. RESULTS: miR-3188 overexpression suppressed the expression of Rictor and inhibited cell viability in HCC1954 and MDA-MB-231, highly Rictor-expressing breast cancer cells. In addition, miR-3188 overexpression decreased the protein level of p-AKT at Ser473, a substrate of mTORC2. Moreover, miRNA-3188 overexpression sensitized breast cancer cells to ionizing radiation (IR) by down-regulating Rictor and p-AKT. CONCLUSION: miR-3188 enhances IR sensitivity by affecting the mTORC2/AKT signalling pathway by altering the expression of Rictor, which could be a promising therapeutic strategy for the future treatment of breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Neoplasias da Mama/mortalidade , Regulação para Baixo , Feminino , Humanos , Radiação Ionizante , Análise de Sobrevida , Transfecção
12.
BMC Cancer ; 21(1): 803, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253170

RESUMO

BACKGROUND: Although the major anticancer effect of metformin involves AMPK-dependent or AMPK-independent mTORC1 inhibition, the mechanisms of action are still not fully understood. METHODS: To investigate the molecular mechanisms underlying the effect of metformin on the mTORC1 inhibition, MTT assay, RT-PCR, and western blot analysis were performed. RESULTS: Metformin induced the expression of ATF4, REDD1, and Sestrin2 concomitant with its inhibition of mTORC1 activity. Treatment with REDD1 or Sestrin2 siRNA reversed the mTORC1 inhibition induced by metformin, indicating that REDD1 and Sestrin2 are important for the inhibition of mTORC1 triggered by metformin treatment. Moreover, REDD1- and Sestrin2-mediated mTORC1 inhibition in response to metformin was independent of AMPK activation. Additionally, lapatinib enhances cell sensitivity to metformin, and knockdown of REDD1 and Sestrin2 decreased cell sensitivity to metformin and lapatinib. CONCLUSIONS: ATF4-induced REDD1 and Sestrin2 expression in response to metformin plays an important role in mTORC1 inhibition independent of AMPK activation, and this signalling pathway could have therapeutic value.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Transfecção
13.
Anticancer Res ; 41(7): 3481-3487, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230143

RESUMO

BACKGROUND/AIM: Metformin is an antidiabetic drug that has been reported to have antitumor activity in many cancer types. This study investigated the molecular mechanisms underlying the antitumor effect of metformin. MATERIALS AND METHODS: We investigated the molecular mechanism of the antitumor effect of metformin alone and in combination with AKT serine/threonine kinase (AKT) inhibition via cell viability and western blot analyses. RESULTS: Notably, metformin increased the phosphorylation of AKT at serine 473 using protein array screening. Metformin-induced AKT activation was markedly suppressed by siRNA targeting activating transcription factor 4 (ATF4) but not AMP-activated protein kinase α. These results indicate that AKT activation by metformin was induced in an ATF4-dependent and AMPKα-independent manner. Treatment using metformin combined with MK-2206, an AKT inhibitor, or a siRNA for AKT markedly reduced the viability of cells compared with those cells treated with these agents alone. In addition, MK-2206 increased cell sensitivity to the combination of metformin with ionizing radiation or cisplatin. CONCLUSION: Inhibition of AKT can enhance the antitumor effect of metformin and would be a promising strategy to sensitize non-small-cell lung cancer to a combination of metformin with radiation or cisplatin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Metformina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Pulmonares/metabolismo
14.
Food Sci Biotechnol ; 30(5): 643-652, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34123461

RESUMO

This study explored the potential of using hybrid pump dryer (HPD) to utilize overproduction in aquaculture of oysters, especially during winter. HPD-dried oysters maybe used as amendments for kimchi, a traditional Korean side dish, for possible nutrient source and flavor enhancer. Oysters were subjected to different heating treatments and evaluated for proximate composition, quality characteristics, and antioxidant activities. Lower lipid and higher glycogen content were observed in HPD-dried oysters processed than the samples dried with hot air (HAD). HPD-dried oysters also exhibited lesser browning activity, better surface color, and higher antioxidant activities. Ash, protein, and water activity were slightly affected by heating treatment. VBN and TBARS were found to be higher in HAD-dried oysters, indicating faster spoilage. Applying heat pattern in drying resulted to improved quality characteristics and antioxidant activities and slower degradation of dried oyster products compared to their single-temperature-drying counterparts, especially those dried at high temperatures.

15.
Biochem Biophys Res Commun ; 533(4): 945-951, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008594

RESUMO

Mechanistic target of rapamycincomplex 1 (mTORC1) integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activity is sensitive to changes in amino acid levels. Here, we investigated the effect of lysine on mTORC1 activity in non-small cell lung cancer (NSCLC) cells. Lysine deprivation suppressed mTORC1 activity and lysine replenishment restored the decreased mTORC1 activity in lysine-deprived cells. Supplementing growth factors, such as insulin growth factor-1 or insulin restored the decreased mTORC1 activity in serum-deprived cells. However, in serum/lysine-deprived cells, supplementing growth factors was not sufficient to restore mTORC1 activity, suggesting thatgrowth factors could not activate mTORC1 efficiently in the absence of lysine. General control nonderepressible 2 and AMP-activated protein kinase were involved in lysine deprivation-mediated inhibition of mTORC1. Taken together, these results suggest that lysine might play role in the regulation of mTORC1 activation in NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células A549 , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Técnicas de Silenciamento de Genes , Humanos , Insulina/administração & dosagem , Fator de Crescimento Insulin-Like I/administração & dosagem , Lisina/administração & dosagem , Lisina/deficiência , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética
16.
Anticancer Res ; 40(3): 1387-1394, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32132035

RESUMO

BACKGROUND/AIM: Cancer cells are frequently exposed to microenvironmental stresses, including amino acid deprivation and hypoxia, which are often targeted for cancer therapy. Here, we examined the effect of hypoxia in cysteine-deprived breast cancer cells and the mechanism to counteract the hypoxia effect. MATERIALS AND METHODS: Cell death was determined by annexin V-FITC and propidium iodide staining. Expression of mRNAs and proteins was determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: Cysteine deprivation or sulfasalazine, a potent inhibitor of cysteine/glutamate transporter, induced cell death by activating transcription factor 4 (ATF4) up-regulation. Hypoxia significantly suppressed cell death and ATF4 up-regulation induced by cysteine deprived conditions. In addition, tumor necrosis factor-related apoptosis-inducing ligand reversed the effect of hypoxia on cysteine deprived conditions. CONCLUSION: Prevention of hypoxia may be a means for augmenting the effect of amino acid deprivation as a strategy for cancer therapy.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Cisteína/deficiência , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Morte Celular/fisiologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Cisteína/antagonistas & inibidores , Cisteína/metabolismo , Feminino , Humanos , Sulfassalazina/farmacologia , Transfecção , Regulação para Cima
17.
Anticancer Res ; 39(12): 6723-6730, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810937

RESUMO

BACKGROUND/AIM: Phosphoserine aminotransferase 1 (PSAT1) is an enzyme implicated in serine biosynthesis, and its overexpression has been linked to cancer cell proliferation. Therefore, targeting PSAT1 is considered to be an anticancer strategy. MATERIALS AND METHODS: The viability of non-small cell lung cancer (NSCLC) cells was measured by MTT assay. Protein and mRNA expression were determined by western blot and reverse transcription polymerase chain reaction, respectively. RESULTS: Glutamine-limiting conditions were generated through glutamine deprivation or CB-839 treatment, which induced PSAT1 expression in NSCLC cells. PSAT1 expression induced by glutamine-limiting conditions was regulated by activating transcription factor 4. Knock-down of PSAT1 enhanced the sensitivity of NSCLC cells to glutamine-limiting conditions. Interestingly, ionizing radiation induced PSAT1 expression, and knocking down PSAT1 increased cell sensitivity to ionizing radiation. CONCLUSION: Inhibiting PSAT1 might aid in the treatment of lung cancer, and PSAT1 may be a therapeutic target for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Transaminases/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Introdução de Genes , Glutaminase/antagonistas & inibidores , Glutamina/antagonistas & inibidores , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , RNA Mensageiro/metabolismo , Tolerância a Radiação , Tiadiazóis/farmacologia , Transaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...