Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Appl Clin Med Phys ; 23(1): e13458, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34845817

RESUMO

PURPOSE: Halcyon linear accelerators employ intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) techniques. The Halcyon offers translational, but not rotational, couch correction, which only allows a 3 degrees of freedom (3-DOF) correction. In contrast, the TrueBeam (TB) linear accelerator offers full 6-DOF corrections. This study aims to evaluate the difference in treatment plan quality for single thoracic or lumbar vertebral segment SBRT between the Halcyon and TB linear accelerators. In addition, this study will also investigate the effect of patient rotational setup errors on the final plan quality. METHODS: We analyzed 20 patients with a single-level spine metastasis located between the T7 and L5 vertebrae near the spinal canal. The median planning target volume was 52.0 cm3 (17.9-138.7 cm3 ). The median tumor diameter in the axial plane was 4.6 cm (range 1.7-6.8 cm), in the sagittal plane was 3.3 cm (range 2-5 cm). The prescription doses were either 12-16 Gy in 1 fraction or 18-24 Gy in 3 fractions. All patients were treated on the TB linear accelerator with a 2.5 mm Multi-Leaf Collimator (MLC) leaf width. Treatment plans were retrospectively created for the Halcyon, which has a 5 mm effective MLC leaf width. The 20 patients had a total of 50 treatments. Analysis of the 50 cone beam computed tomography (CBCT) scans showed average rotational setup errors of 0.6°, 1.2°, and 0.8° in pitch, yaw, and roll, respectively. Rotational error in roll was not considered in this study, as the original TB plans used a coplanar volumetric modulated arc therapy (VMAT) technique, and each 1° of roll will contribute an error of 1/360. If a plan has 3 arcs, the contribution from errors in roll will be < 0.1%. To simulate different patient setup errors, for each patient, 12 CT image datasets were generated in Velocity AI with different rotational combinations at a pitch and yaw of 1°, 2°, and 3°, respectively. We recalculated both the TB and Halcyon plans on these rotated images.  The dosimetric plan quality was evaluated based on the percent tumor coverage, the Conformity Index (CI), Gradient Index (GI), Homogeneity index (HI), the maximum dose to the cord/cauda, and the volume of the cord/cauda receiving 8, 10, and 12 Gy (V8Gy, V10Gy and V12Gy). Paired t-tests were performed between the original and rotated plans with a significance level of 0.05. RESULTS: The Eclipse based VMAT plans on Halcyon achieved a similar target coverage (92.3 ± 3.0% vs. 92.4 ± 3.3%, p = 0.82) and CI (1.0 ± 0.1 vs. 1.1 ± 0.2, p = 0.12) compared to the TB plans. The Gradient index of Halcyon is higher (3.96 ±0.8) than TB (3.85 ±0.7), but not statistically significant. The maximum dose to the spinal cord/cauda was comparable (11.1 ± 2.8 Gy vs. 11.4 ± 3.6 Gy, p = 0.39), as were the V8Gy, V10Gy and V12Gy to the cord/cauda. The dosimetric influence of patient rotational setup error was statistically insignificant for rotations of up to 1° pitch/yaw (with similar target coverage, CI, max cord/cauda dose and V8Gy, V10Gy, V12Gy for cord/cauda). The total number of monitor units (MUs) for Halcyon (4998 ± 1688) was comparable to that of TB (5463 ± 2155) (p = 0.09). CONCLUSIONS: The Halcyon VMAT plans for a single thoracic or lumbar spine metastasis were dosimetrically comparable to the TB plans. Patient rotation within 1° in the pitch and yaw directions, if corrected by translation, resulted in insignificant dosimetric effects. The Halcyon linear accelerator is an acceptable alternative to TB for the treatment of single thoracic or lumbar spinal level metastasis, but users need to be cautious about the patient rotational setup error.  It is advisable to select patients appropriately, including only those with the thoracic or lumbar spine involvement and keeping at least 2 mm separation between the target and the cord/cauda. More margin is needed if the distance between the isocenter and cord/cauda is larger. It is advisable to place the planning isocenter close to the spinal canal to further mitigate the rotational error. SUMMARY: We simulated various scenarios of patient setup errors with different rotational combinations of pitch and yaw with 1°, 2°, and 3°, respectively. Rotation was corrected with translation only to mimic the Halcyon treatment scenario. Using the Halcyon for treating a tumor in a single thoracic or lumbar vertebral segment is feasible, but caution should be noted in patients requiring rotational corrections of > 1° in the absence of 6-DOF correction capabilities.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Coluna Vertebral
2.
Med Phys ; 46(3): 1341-1354, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30620406

RESUMO

PURPOSE: A new type of linear accelerator (linac) was recently introduced into the market by a major manufacturer. Our institution is one of the early users of this preassembled and preconfigured dual-layer multileaf collimator (MLC), ring-gantry linac - Halcyon™ (1st version). We performed a set of full acceptance testing and commissioning (ATC) measurements for three Halcyon machines and compared the measured data with the standard beam model provided by the manufacturer. The ATC measurements were performed following the guidelines given in different AAPM protocols as well as guidelines provided by the manufacturer. The purpose of the present work was to perform a risk assessment of the ATC process for this new type of linac and investigate whether the results obtained from this analysis could potentially be used as a guideline for improving the design features of this type of linac. METHODS: AAPM's TG100 risk assessment methodology was applied to the ATC process. The acceptance testing process relied heavily on the use of a manufacturer-supplied phantom and the automated analysis of electronic portal imaging device (EPID) images. For the commissioning process, a conventional measurement setup and process (e.g., use of water tank for scanning) was largely used. ATC was performed using guidelines recommended in various AAPM protocols (e.g., TG-106, TG-51) as well as guidelines provided by the manufacturer. Six medical physicists were involved in this study. Process maps, process steps, and failure modes (FMs) were generated for the ATC procedures. Failure modes and effects analysis (FMEA) were performed following the guidelines given in AAPM TG-100 protocol. The top 5 and top 10 highest-ranked FMs were identified for the acceptance and commissioning procedures, respectively. Quality control measures were suggested to mitigate these FMs. RESULTS: A total of 38 steps and 88 FMs were identified for the entire ATC process. Fourteen steps and 34 FMs arose from acceptance testing. The top 5 FMs that were identified could potentially be mitigated by the manufacturer. For commissioning, a total of 24 steps and 54 potential FMs were identified. The use of separate measurement tools that are not machine-integrated has been identified as a cause for the higher number of steps and FMs generated from the conventional ATC approach. More than half of the quality control measures recommended for both acceptance and commissioning could potentially be incorporated by the manufacturer in the design of the Halcyon machine. CONCLUSION: This paper presents the results of FMEA and quality control measures to mitigate the FMs for the ATC process for Halcyon machine. Unique FMs that result from the differences in the ATC guidelines provided by the vendor and current conventional protocols, and the challenges of performing the ATC due to the new linac features and ring-gantry design were highlighted for the first time. The FMs identified in the present work along with the suggested quality control measures, could potentially be used to improve the design features of future ring-gantry type of linacs that are likely to be preassembled, preconfigured, and heavily reliant on automation and image guidance.


Assuntos
Equipamentos e Provisões Elétricas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Medição de Risco/métodos , Humanos , Controle de Qualidade
3.
Med Phys ; 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009526

RESUMO

PURPOSE: The International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) have jointly published a new code of practice (CoP), TRS483, for the dosimetry of small static photon fields used in external beam radiotherapy. It gave recommendations on how to perform reference dosimetry in nonstandard machine-specific reference (msr) fields and measure field output factors in small fields. The purpose of this work was to perform a dosimetric evaluation of the recommendations given in this CoP. METHODS: All measurements were done in a Varian TrueBeam™ STx linear accelerator. Five ionization chambers were used for beam quality measurements, four Farmer type ionization chambers for performing reference dosimetry and two diodes for performing field output factor measurements. Field output factor measurements were done for fourteen field sizes (ranging from 0.5 cm × 0.5 cm to 10 cm × 10 cm). Beam energies used were: 6 MV WFF, 6 MV FFF, 10 MV WFF, and 10 MV FFF. Where appropriate, results from this study were compared with those obtained from the recommendations given in the IAEA TRS398 CoP, AAPM TG51 and TG51 Addendum protocols. RESULTS: Beam quality measurements show that for all beam energies and for equivalent square msr field sizes ranging from 4 cm × 4 cm to 10 cm × 10 cm, agreement between calculated and measured values of TPR20,10 (10) was within 0.6%. When %dd(10,10)X was used as beam quality specifier, the agreement was found to be within 0.8%. Absorbed dose to water per unit monitor unit at the depth of maximum dose zmax in a beam of quality Q, Dw,Qzmax/MU, was determined using both %dd(10,10)X and TPR20,10 (10) as beam quality specifiers. Measured ratios of Dw,Q (zmax )/MU, determined using the two approaches, ranged between 0.999 and 1.000 for all the beam energies investigated. Comparison with TRS398, TG51 and TG51 addendum protocols show that depending on beam energy, the mean values of the ratios TRS398/TRS483, TG51/TRS483, and TG51 Addendum/TRS483 of Dw,Q (zmax )/MU determined using both approaches show excellent agreement with TRS398 CoP (to within 0.05%); agreement with TG51 and TG51 addendum was to within 0.3% for all four beam energies investigated. Field output factors, determined using the two methods recommended in the TRS483 CoP, showed excellent agreement between the two methods. For the 1 cm collimator field size, the mean value of the field output factor obtained from an average of the two detectors investigated was found to be 2% lower than the mean value of the uncorrected ratio of readings. CONCLUSION: For beams with and without flattening filters, the values of Dw,Q (zmax )/MU obtained following the new CoP are found to be consistent with those obtained using TRS398, TG51 and TG51 addendum protocols to within 0.3%. Field output factors for small beams can be improved when the correction factors for different detectors included in TRS483 are appropriately incorporated into their dosimetry.

4.
J Appl Clin Med Phys ; 18(4): 140-143, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28574211

RESUMO

This work quantified differences between recommendations of the TG-51 and TG-51 addendum reference dosimetry protocols. Reference dosimetry was performed for flattened photon beams with nominal energies of 6, 10, 15, and 23 MV, as well as flattening-filter free (FFF) beam energies of 6 and 10 MV, following the recommendations of both the TG-51 and TG-51 addendum protocols using both a Farmer® ionization chamber and a scanning ionization chamber with calibration coefficients traceable to absorbed dose-to-water (Dw ) standards. Differences in Dw determined by the two protocols were 0.1%-0.3% for beam energies with a flattening filter, and up to 0.2% and 0.8% for FFF beams measured with the scanning and Farmer® ionization chambers, respectively, due to kQ determination, volume-averaging correction, and collimator jaw setting. Combined uncertainty was between 0.91% and 1.2% (k = 1), varying by protocol and detector.


Assuntos
Fótons/uso terapêutico , Radiometria/normas , Sociedades Científicas/normas , Calibragem , Física , Radioterapia de Alta Energia , Estados Unidos
5.
J Appl Clin Med Phys ; 17(5): 184-199, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685124

RESUMO

We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty-four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC- and clinical cone/Iris-based plans. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney signed-rank test. The planning accuracy of the MLC-based plans was validated using chamber and film measurements. The InCise MLC-based plans achieved mean dose and target coverage comparable to the cone/Iris-based plans. Although the conformity indices of the MLC-based plans were slightly higher than those of the cone/Iris-based plans, beam delivery time for the MLC-based plans was shorter by 30% ~ 40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC-based plans provided inferior dose conformity compared to cone/Iris-based plans. The QA results of MLC-based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases.


Assuntos
Neoplasias Encefálicas/cirurgia , Iris/efeitos da radiação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Encefálicas/secundário , Humanos , Dosagem Radioterapêutica
6.
PLoS One ; 8(4): e59729, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577071

RESUMO

BACKGROUND: Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. METHODS: 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique's ability to meet dose constraints was further investigated. RESULTS: HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. CONCLUSION: HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.


Assuntos
Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Órgãos em Risco/efeitos da radiação , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Fracionamento da Dose de Radiação , Humanos , Neoplasias Pulmonares/patologia , Planejamento da Radioterapia Assistida por Computador , Carga Tumoral/efeitos da radiação
7.
PLoS One ; 7(4): e35809, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558228

RESUMO

BACKGROUND: No selection criteria for helical tomotherapy (HT) based stereotactic ablative radiotherapy (SABR) to treat early stage non-small cell lung cancer (NSCLC) or solitary lung metastases has been established. In this study, we investigate the dosimetric selection criteria for HT based SABR delivering 70 Gy in 10 fractions to avoid severe toxicity in the treatment of centrally located lesions when adequate target dose coverage is desired. MATERIALS AND METHODS: 78 HT-SABR plans for solitary lung lesions were created to prescribe 70 Gy in 10 fractions to the planning target volume (PTV). The PTV was set to have ≥95% PTV receiving 70 Gy in each case. The cases for which dose constraints for ≥1 OAR could not be met without compromising the target dose coverage were compared with cases for which all target and OAR dose constraints were met. RESULTS: There were 23 central lesions for which OAR dose constraints could not be met without compromising PTV dose coverage. Comparing to cases for which optimal HT-based SABR plans were generated, they were associated with larger tumor size (5.72±1.96 cm vs. 3.74±1.49 cm, p<0.0001), higher lung dose, increased number of immediately adjacent OARs ( 3.45±1.34 vs. 1.66±0.81, p<0.0001), and shorter distance to the closest OARs (GTV: 0.26±0.22 cm vs. 0.88±0.54 cm, p<0.0001; PTV 0.19±0.18 cm vs. 0.48±0.36 cm, p = 0.0001). CONCLUSION: Delivery of 70 Gy in 10 fractions with HT to meet all the given OAR and PTV dose constraints are most likely when the following parameters are met: lung lesions ≤3.78 cm (11.98 cc), ≤2 immediately adjacent OARs which are ≥0.45 cm from the gross lesion and ≥0.21 cm from the PTV.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Tomografia Computadorizada Espiral
8.
J Thorac Oncol ; 6(6): 1132-41, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21532502

RESUMO

INTRODUCTION: Local therapy is becoming increasingly important as a part of the definitive treatment for malignant pleural mesothelioma after extrapleural pneumonectomy (EPP) because of the emergence of trimodality therapy consisted of chemotherapy, EPP, and adjuvant radiotherapy. Herein, we explore the current evidence and indications for adjuvant intensity-modulated radiotherapy (IMRT), as well as how to further improve this technique and adapt new technology in the delivering adjuvant radiotherapy in the setting of trimodality therapy. METHODS: A systematic review of relevant studies identified through PubMed, ISI Web of Knowledge (Web of Science), the Cochrane Library, and the National Guideline Clearinghouse search engines was performed. RESULTS: Local control remains poor despite the inclusion of conventional adjuvant radiation therapy in trimodality therapy. This can be improved by the delivery of adjuvant IMRT. However, IMRT can be associated with severe pulmonary toxicity if the radiation dose to the remaining lung is not kept to a very low level. This is especially true when patients are receiving chemotherapy. New advances in technology can allow for lower doses to the contralateral lung, decreased treatment delivery time, and improved target dose coverage. CONCLUSION: Excellent local control can be achieved through adjuvant IMRT after EPP for malignant pleural mesothelioma. Severe pulmonary toxicity may be avoided by setting stringent dose constraints for the contralateral lung. This can be aided by the advances in technology. Post-treatment surveillance may be reliably conducted by periodical [18F]-fluorodeoxyglucose-positron emission tomography imaging.


Assuntos
Mesotelioma/radioterapia , Mesotelioma/cirurgia , Neoplasias Pleurais/radioterapia , Neoplasias Pleurais/cirurgia , Pneumonectomia/métodos , Radioterapia de Intensidade Modulada , Terapia Combinada/métodos , Humanos
9.
Int J Radiat Oncol Biol Phys ; 81(3): 856-62, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21255942

RESUMO

PURPOSE: To investigate the ability of helical tomotherapy (HT) to spare critical organs immediately adjacent to the tumor target in stereotactic body radiation therapy (SBRT) for centrally located lung lesions. METHODS AND MATERIALS: HT SBRT plans for 10 patients with centrally located lesions or lesions immediately adjacent to a critical structure were generated. A total of 70 Gy in 10 fractions was prescribed to the planning target volume (PTV) to satisfy a target volume coverage of ≥95% PTV receiving 70 Gy and an established set of dose constraints for the organs at risk (OARs). Quality assurance (QA) of the HT plans was performed with both ion chamber and film measurements. RESULTS: The PTV coverage criteria was met with 95% of the PTV receiving 70.68 ± 0.33 Gy for all cases even though the OARs immediately adjacent to the PTV ranged from 0.38 to 0.85 cm away. The mean lung dose (MLD), and V(20) were 7.15 ± 1.44 Gy, and 11.93 ± 3.24 % for the total lung, respectively. The dose parameters of MLD, V(5), V(10), and V(20) for the contralateral lung were significantly lower than those for the ipsilateral lung (p < 0.05). An average dose fall off from the PTV periphery to the edge of the immediately adjacent OAR was 47.6% over an average distance of 4.87 mm. Comparison of calculated and measured doses with the ion chamber showed an average of 1.85% point dose error, whereas an average mean gamma and the area with a gamma larger than 1 of 0.20 and 0.94% were observed, respectively. CONCLUSION: HT allows the sparing of critical structures immediately adjacent to the tumor target, thus making SBRT for these centrally located lesions feasible.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Órgãos em Risco/efeitos da radiação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Viabilidade , Humanos , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Estadiamento de Neoplasias , Órgãos em Risco/anatomia & histologia , Radiografia , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Carga Tumoral
10.
Am J Clin Oncol ; 33(3): 233-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19745693

RESUMO

OBJECTIVE: This study was performed to determine the safety and efficacy of belotecan, a new camptothecin analogue and potent topoisomerase I inhibitor, with and without platinum in patients with recurrent ovarian cancer. METHODS: Fifty-three patients with recurrent or persistent ovarian cancer were enrolled between March 2005 and March 2008. Eligible patients received 0.5 mg/m of intravenous (IV) belotecan on days 1 to 5, every 3 weeks belotecan monotherapy (B) or 50 mg/m of IV cisplatin on day 1 plus 0.3 mg/m of IV belotecan on days 1 to 5, every 3 weeks (belotecan plus cisplatin combination therapy [BP]). RESULTS: Of the 53 treated patients, 34 received BP and 19 received B. Thirty-four patients had platinum-sensitive (PS) disease and 19 had platinum-resistant disease. The overall response of the 53 patients was 37.7% (20/53). According to regimen, the response rate in the BP group was 47.1% (16/34) and that of the B group was 21.1% (4/19). BP had better response (66.7%, 14/21) than B (15.4%, 2/13) for PS disease (P = 0.004), but it was not superior in terms of progression-free survival (BP, 6 month; B, 7 months). Grade 3 or 4 toxicity was less common in B than in BP. CONCLUSION: Both BP and B seems to be effective and safe regimens for patients with PS or platinum-resistant recurrent ovarian cancer. These results warrant further prospective randomized trials. Both BP and B seems to be effective and safe regimens for patients with PS or platinum-resistant recurrent ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Carcinoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Camptotecina/administração & dosagem , Camptotecina/uso terapêutico , Carcinoma/mortalidade , Cisplatino/administração & dosagem , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Doenças Hematológicas/induzido quimicamente , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos Organoplatínicos/administração & dosagem , Neoplasias Ovarianas/mortalidade , Terapia de Salvação , Análise de Sobrevida , Resultado do Tratamento
11.
Int J Radiat Oncol Biol Phys ; 71(5): 1537-46, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18513883

RESUMO

PURPOSE: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculations were analyzed. RESULTS: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. CONCLUSIONS: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Mesotelioma/radioterapia , Doses de Radiação , Pneumonite por Radiação/etiologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Mesotelioma/diagnóstico por imagem , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Pneumonite por Radiação/prevenção & controle , Radiografia , Radiometria/normas , Radioterapia de Intensidade Modulada/efeitos adversos
12.
J Gynecol Oncol ; 19(3): 162-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19471565

RESUMO

OBJECTIVE: The purposes of this study were to evaluate the expression of p16(INK4a) (referred as to p16) and Ki-67 in cervical intraepithelial neoplasia (CIN), and the correlation between high-risk human papillomavirus (HPV) infection and the above biomarkers. METHODS: We analyzed 31 patients who were diagnosed with CIN at Kwandong University Myongji Hospital from October 2006 to September 2007. CIN specimens (CIN1, 12; CIN2, 6; CIN3, 13) were obtained by colposcopy-directed biopsy (CDB) or loop electrical excision procedure (LEEP). The expressions of p16 and Ki-67 were evaluated by immunohistochemical methods with antibodies to p16 and Ki67. The immunohistochemical staining results were classified into four grades: 0, 1, 2 and 3. HPV genotyping or Hybrid Capture-II test was used to detect high-risk HPV. RESULTS: The expression of p16 (p<0.001) and Ki-67 (p=0.003) were positively associated with CIN grade. p16 expressions increased significantly with high-risk HPV infection (p=0.014), especially HPV type 16 and 58. Ki-67 expression was not related with high-risk HPV. There was positive correlation between the expression of the p16 and Ki-67 (p=0.007). CONCLUSION: CIN grade were positively related to the expression of p16 and Ki-67. p16 expressions of high-risk HPV specimens significantly increased more than Ki-67. Therefore, in the diagnosis of CIN and high-risk HPV infection, p16 can be a useful biomarker.

13.
Cancer Res Treat ; 40(1): 6-10, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19688058

RESUMO

PURPOSE: The aim of this study was to evaluate the behavior of endometrial stromal sarcomas (ESSs) in relation to their clinical and pathogenic features, and to determine the optimal treatment strategy. MATERIALS AND METHODS: A retrospective analysis was performed involving 28 patients with histologic-proven ESSs treated at our institution between 1987 and 2006. RESULTS: The median follow-up was 54.7+/-63.1 months and the 5-year survival rate was 82.0%. Twenty-two (81.5%) and 5 patients (18.5%) had low- and high-grade disease, respectively. Univariate analysis revealed that the histologic grades, based on mitotic count, were associated with longer survival (p=0.004). However, among those patients with low-grade tumors, 5/20 patients (25%) had a recurrence and 2/21 patients (9.5%) had distant metastasis during the follow-up period. With the exception of 2 patients, 26 patients with ESSs underwent hysterectomy as primary treatment. Adjuvant treatment after surgery was administered to 14/26 patients (53.8%). Hormone therapy with progesterone, chemotherapy, and/or radiotherapy did not influence overall survival. However, the postoperative adjuvant therapy group, regardless of the treatment modality, was associated with relatively increased overall survival when compared to the surgery only group (p=0.054). CONCLUSIONS: The preoperative differential diagnosis of ESSs from other benign gynecologic diseases is often difficult. We recommend adjuvant therapy be administered after hysterectomy in patients with ESS to prevent recurrence or distant metastasis.

14.
Med Phys ; 34(4): 1388-97, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17500470

RESUMO

Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energy spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (< 100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (< 1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.


Assuntos
Água Corporal , Imageamento Tridimensional/métodos , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Transferência Linear de Energia , Método de Monte Carlo , Fótons/uso terapêutico , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Int J Radiat Oncol Biol Phys ; 68(5): 1349-58, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17446001

RESUMO

PURPOSE: To assess quantitatively the impact of incorporating functional lung imaging into intensity-modulated radiation therapy planning for locally advanced non-small cell lung cancer (NSCLC). METHODS AND MATERIALS: Sixteen patients with advanced-stage NSCLC who underwent radiotherapy were included in this study. Before radiotherapy, each patient underwent lung perfusion imaging with single-photon-emission computed tomography and X-ray computed tomography (SPECT-CT). The SPECT-CT was registered with simulation CT and was used to segment the 50- and 90-percentile hyperperfusion lung (F50 lung and F90 lung). Two IMRT plans were designed and compared in each patient: an anatomic plan using simulation CT alone and a functional plan using SPECT-CT in addition to the simulation CT. Dosimetric parameters of the two types of plans were compared in terms of tumor coverage and avoidance of normal tissues. RESULTS: In incorporating perfusion information in IMRT planning, the median reductions in the mean doses to the F50 and F90 lung in the functional plan were 2.2 and 4.2 Gy, respectively, compared with those in the anatomic plans. The median reductions in the percentage of volume irradiated with >5 Gy, >10 Gy, and >20 Gy in the functional plans were 7.1%, 6.0%, and 5.1%, respectively, for F50 lung, and 11.7%, 12.0%, and 6.8%, respectively, for F90 lung. A greater degree of sparing of the functional lung was achieved for patients with large perfusion defects compared with those with relatively uniform perfusion distribution. CONCLUSION: Function-guided IMRT planning appears to be effective in preserving functional lung in locally advanced-stage NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Radioterapia de Intensidade Modulada , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Estudos de Viabilidade , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
16.
Int J Radiat Oncol Biol Phys ; 66(3): 939-48, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17011466

RESUMO

PURPOSE: To investigate the dosimetric accuracy of commercial treatment planning systems used in intensity-modulated radiotherapy (IMRT) for thoracic cancer. METHODS AND MATERIALS: Clinical IMRT plans for lung and esophageal cancers and mesothelioma were used to investigate the accuracy of dose calculations from two commercial treatment planning systems (Pinnacle and Corvus systems). Dose distributions were measured with ion chambers and thermoluminescent dosimeters for individual IMRT fields and composite treatment plans in water phantoms and anthropomorphic phantoms. A Monte Carlo-based system was established to compute three-dimensional dose distributions to compare with the treatment planning system calculations. RESULTS: Dose calculations from the Pinnacle system were acceptable within 5% of the local dose or a 5-mm distance-to-agreement for 80% of the points measured with ion chambers, 74% of the points measured with thermoluminescent dosimeters, and 96% of the points compared with the Monte Carlo calculations. For the Corvus system, 89% of the points agreed with the measured dose and 98% agreed with the Monte Carlo calculations. Underestimation of the dose from the treatment planning system was found in the low-dose regions (<50% of the prescribed dose), possibly caused by inadequate modeling of the multileaf collimators. CONCLUSION: The Pinnacle and Corvus dose calculations were acceptable for thoracic IMRT in high-dose regions. Beam modeling is likely the most critical factor for the accuracy of IMRT dose calculations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Esofágicas/radioterapia , Neoplasias Pulmonares/radioterapia , Mesotelioma/radioterapia , Método de Monte Carlo , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/normas
17.
Med Phys ; 33(3): 770-81, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16878579

RESUMO

A multileaf collimator (MLC) model, "MATMLC," was developed to simulate MLCs for Monte Carlo (MC) dose calculations of intensity-modulated radiation therapy (IMRT). This model describes MLCs using matrices of regions, each of which can be independently defined for its material and geometry, allowing flexibility in simulating MLCs from various manufacturers. The free parameters relevant to the dose calculations with this MLC model included MLC leaf density, interleaf air gap, and leaf geometry. To commission the MLC model and its free parameters for the Varian Millennium MLC-120 (Varian Oncology Systems, Palo Alto, CA), we used the following leaf patterns: (1) MLC-blocked fields to test the effects of leaf transmission and leakage; (2) picket-fence fields to test the effects of the interleaf air gap and tongue-groove design; and (3) abutting-gap fields to test the effects of rounded leaf ends. Transmission ratios and intensity maps for these leaf patterns were calculated with various sets of modeling parameters to determine their dosimetric effects, sensitivities, and their optimal combinations to give the closest agreement with measured results. Upon commissioning the MLC model, we computed dose distributions for clinical IMRT plans using the MC system and verified the results with those from ion chamber and thermoluminescent dosimeter measurements in water phantoms and anthropomorphic phantoms. This study showed that the MLC transmission ratios were strongly dependent on both leaf density and the interleaf air gap. The effect of interleaf air gap and tongue-groove geometry can be determined most effectively through fence-type MLC patterns. Using the commissioned MLC model, we found that the calculated dose from the MC system agreed with the measured data within clinically acceptable criteria from low- to high-dose regions, showing that the model is acceptable for clinical applications.


Assuntos
Método de Monte Carlo , Neoplasias/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional/instrumentação , Humanos , Modelos Biológicos , Modelos Teóricos , Imagens de Fantasmas , Radiometria/instrumentação , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...