Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 93: 103096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301347

RESUMO

We present a fully automated method of integrating intraoral scan (IOS) and dental cone-beam computerized tomography (CBCT) images into one image by complementing each image's weaknesses. Dental CBCT alone may not be able to delineate precise details of the tooth surface due to limited image resolution and various CBCT artifacts, including metal-induced artifacts. IOS is very accurate for the scanning of narrow areas, but it produces cumulative stitching errors during full-arch scanning. The proposed method is intended not only to compensate the low-quality of CBCT-derived tooth surfaces with IOS, but also to correct the cumulative stitching errors of IOS across the entire dental arch. Moreover, the integration provides both gingival structure of IOS and tooth roots of CBCT in one image. The proposed fully automated method consists of four parts; (i) individual tooth segmentation and identification module for IOS data (TSIM-IOS); (ii) individual tooth segmentation and identification module for CBCT data (TSIM-CBCT); (iii) global-to-local tooth registration between IOS and CBCT; and (iv) stitching error correction for full-arch IOS. The experimental results show that the proposed method achieved landmark and surface distance errors of 112.4µm and 301.7µm, respectively.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Compostos de Trimetilsilil , Humanos , Artefatos , Tomografia Computadorizada de Feixe Cônico , Imidazóis
2.
Phys Med Biol ; 67(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35944531

RESUMO

Objective.Recently, dental cone-beam computed tomography (CBCT) methods have been improved to significantly reduce radiation dose while maintaining image resolution with minimal equipment cost. In low-dose CBCT environments, metallic inserts such as implants, crowns, and dental fillings cause severe artifacts, which result in a significant loss of morphological structures of teeth in reconstructed images. Such metal artifacts prevent accurate 3D bone-teeth-jaw modeling for diagnosis and treatment planning. However, the performance of existing metal artifact reduction (MAR) methods in handling the loss of the morphological structures of teeth in reconstructed CT images remains relatively limited. In this study, we developed an innovative MAR method to achieve optimal restoration of anatomical details.Approach.The proposed MAR approach is based on a two-stage deep learning-based method. In the first stage, we employ a deep learning network that utilizes intra-oral scan data as side-inputs and performs multi-task learning of auxiliary tooth segmentation. The network is designed to improve the learning ability of capturing teeth-related features effectively while mitigating metal artifacts. In the second stage, a 3D bone-teeth-jaw model is constructed with weighted thresholding, where the weighting region is determined depending on the geometry of the intra-oral scan data.Main results.The results of numerical simulations and clinical experiments are presented to demonstrate the feasibility of the proposed approach.Significance.We propose for the first time a MAR method using radiation-free intra-oral scan data as supplemental information on the tooth morphological structures of teeth, which is designed to perform accurate 3D bone-teeth-jaw modeling in low-dose CBCT environments.


Assuntos
Artefatos , Aprendizado Profundo , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Metais , Próteses e Implantes
3.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6562-6568, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34077356

RESUMO

Accurate and automatic segmentation of three-dimensional (3D) individual teeth from cone-beam computerized tomography (CBCT) images is a challenging problem because of the difficulty in separating an individual tooth from adjacent teeth and its surrounding alveolar bone. Thus, this paper proposes a fully automated method of identifying and segmenting 3D individual teeth from dental CBCT images. The proposed method addresses the aforementioned difficulty by developing a deep learning-based hierarchical multi-step model. First, it automatically generates upper and lower jaws panoramic images to overcome the computational complexity caused by high-dimensional data and the curse of dimensionality associated with limited training dataset. The obtained 2D panoramic images are then used to identify 2D individual teeth and capture loose- and tight- regions of interest (ROIs) of 3D individual teeth. Finally, accurate 3D individual tooth segmentation is achieved using both loose and tight ROIs. Experimental results showed that the proposed method achieved an F1-score of 93.35 percent for tooth identification and a Dice similarity coefficient of 94.79 percent for individual 3D tooth segmentation. The results demonstrate that the proposed method provides an effective clinical and practical framework for digital dentistry.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Dente , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Dente/diagnóstico por imagem
4.
Comput Methods Programs Biomed ; 200: 105833, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33250283

RESUMO

For compression fracture detection and evaluation, an automatic X-ray image segmentation technique that combines deep-learning and level-set methods is proposed. Automatic segmentation is much more difficult for X-ray images than for CT or MRI images because they contain overlapping shadows of thoracoabdominal structures including lungs, bowel gases, and other bony structures such as ribs. Additional difficulties include unclear object boundaries, the complex shape of the vertebra, inter-patient variability, and variations in image contrast. Accordingly, a structured hierarchical segmentation method is presented that combines the advantages of two deep-learning methods. Pose-driven learning is used to selectively identify the five lumbar vertebrae in an accurate and robust manner. With knowledge of the vertebral positions, M-net is employed to segment the individual vertebra. Finally, fine-tuning segmentation is applied by combining the level-set method with the previously obtained segmentation results. The performance of the proposed method was validated by 160 lumbar X-ray images, resulting in a mean Dice similarity metric of 91.60±2.22%. The results show that the proposed method achieves accurate and robust identification of each lumbar vertebra and fine segmentation of individual vertebra.


Assuntos
Fraturas por Compressão , Algoritmos , Fraturas por Compressão/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Vértebras Lombares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Raios X
5.
Phys Med Biol ; 65(8): 085018, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32101805

RESUMO

The annotation of three-dimensional (3D) cephalometric landmarks in 3D computerized tomography (CT) has become an essential part of cephalometric analysis, which is used for diagnosis, surgical planning, and treatment evaluation. The automation of 3D landmarking with high-precision remains challenging due to the limited availability of training data and the high computational burden. This paper addresses these challenges by proposing a hierarchical deep-learning method consisting of four stages: 1) a basic landmark annotator for 3D skull pose normalization, 2) a deep-learning-based coarse-to-fine landmark annotator on the midsagittal plane, 3) a low-dimensional representation of the total number of landmarks using variational autoencoder (VAE), and 4) a local-to-global landmark annotator. The implementation of the VAE allows two-dimensional-image-based 3D morphological feature learning and similarity/dissimilarity representation learning of the concatenated vectors of cephalometric landmarks. The proposed method achieves an average 3D point-to-point error of 3.63 mm for 93 cephalometric landmarks using a small number of training CT datasets. Notably, the VAE captures variations of craniofacial structural characteristics.


Assuntos
Pontos de Referência Anatômicos , Cefalometria , Imageamento Tridimensional/normas , Aprendizado de Máquina , Automação , Humanos , Reprodutibilidade dos Testes , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...