Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 42(1-9): 837-41, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047393

RESUMO

This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed.

2.
Ultrasonics ; 40(1-8): 803-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12160048

RESUMO

A high powered Q-switched Nd:YAG laser was used to excite the surface waves, and an optical fiber sensor was used to detect the out-of-plane displacements due to the propagating waves. This sensor is based on the fiber optic Sagnac interferometer, which has the path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence in an optical path using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. The performance of the fiber optic Sagnac interferometer was investigated, and laser-generated surface wave signals were detected using this fiber optic sensor. The developed fiber optic sensor configured in this study is very simple and is effective for non-contact detection of ultrasonic waves.

3.
Artigo em Inglês | MEDLINE | ID: mdl-12080962

RESUMO

This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA