Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Function (Oxf) ; 4(1): zqac065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654930

RESUMO

Nephrotoxicity is a major cause of kidney disease and failure in drug development, but understanding of cellular mechanisms is limited, highlighting the need for better experimental models and methodological approaches. Most nephrotoxins damage the proximal tubule (PT), causing functional impairment of solute reabsorption and systemic metabolic complications. The antiviral drug tenofovir disoproxil fumarate (TDF) is an archetypal nephrotoxin, inducing mitochondrial abnormalities and urinary solute wasting, for reasons that were previously unclear. Here, we developed an automated, high-throughput imaging pipeline to screen the effects of TDF on solute transport and mitochondrial morphology in human-derived RPTEC/TERT1 cells, and leveraged this to generate realistic models of functional toxicity. By applying multiparametric metabolic profiling-including oxygen consumption measurements, metabolomics, and transcriptomics-we elucidated a highly robust molecular fingerprint of TDF exposure. Crucially, we identified that the active metabolite inhibits complex V (ATP synthase), and that TDF treatment causes rapid, dose-dependent loss of complex V activity and expression. Moreover, we found evidence of complex V suppression in kidney biopsies from humans with TDF toxicity. Thus, we demonstrate an effective and convenient experimental approach to screen for disease relevant functional defects in kidney cells in vitro, and reveal a new paradigm for understanding the pathogenesis of a substantial cause of nephrotoxicity.


Assuntos
Antivirais , Insuficiência Renal , Humanos , Tenofovir/efeitos adversos , Antivirais/metabolismo , Rim , Mitocôndrias , Insuficiência Renal/tratamento farmacológico , Metabolômica
2.
Nat Commun ; 13(1): 5732, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175561

RESUMO

The kidney regulates plasma protein levels by eliminating them from the circulation. Proteins filtered by glomeruli are endocytosed and degraded in the proximal tubule and defects in this process result in tubular proteinuria, an important clinical biomarker. However, the spatiotemporal organization of renal protein metabolism in vivo was previously unclear. Here, using functional probes and intravital microscopy, we track the fate of filtered proteins in real time in living mice, and map specialized processing to tubular structures with singular value decomposition analysis and three-dimensional electron microscopy. We reveal that degradation of proteins requires sequential, coordinated activity of distinct tubular sub-segments, each adapted to specific tasks. Moreover, we leverage this approach to pinpoint the nature of endo-lysosomal disorders in disease models, and show that compensatory uptake in later regions of the proximal tubule limits urinary protein loss. This means that measurement of proteinuria likely underestimates severity of endocytotic defects in patients.


Assuntos
Rim , Processamento de Proteína Pós-Traducional , Animais , Biomarcadores , Túbulos Renais Proximais , Camundongos , Proteinúria
3.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087354

RESUMO

The nicotinamide adenine dinucleotide (NAD+/NADH) pair is a cofactor in redox reactions and is particularly critical in mitochondria as it connects substrate oxidation by the tricarboxylic acid (TCA) cycle to adenosine triphosphate generation by the electron transport chain (ETC) and oxidative phosphorylation. While a mitochondrial NAD+ transporter has been identified in yeast, how NAD enters mitochondria in metazoans is unknown. Here, we mine gene essentiality data from human cell lines to identify MCART1 (SLC25A51) as coessential with ETC components. MCART1-null cells have large decreases in TCA cycle flux, mitochondrial respiration, ETC complex I activity, and mitochondrial levels of NAD+ and NADH. Isolated mitochondria from cells lacking or overexpressing MCART1 have greatly decreased or increased NAD uptake in vitro, respectively. Moreover, MCART1 and NDT1, a yeast mitochondrial NAD+ transporter, can functionally complement for each other. Thus, we propose that MCART1 is the long sought mitochondrial transporter for NAD in human cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...