Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501272

RESUMO

Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.

2.
Methods Mol Biol ; 2484: 143-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461451

RESUMO

Induced mutations have been used to facilitate plant breeding for more than 80 years. Success requires the development of a mutant population and methods to evaluate that population. In this protocol we provide methods for the development of a chickpea mutant population using gamma irradiation, and low-cost methods for the molecular characterization of the mutant population. Specifically, this chapter provides detailed methods for (1) mutation induction by gamma rays and determination of LD50 and RD50, (2) phenotypic assessment of the M2 generation, (3) low-cost extraction of genomic DNA, and (4) identification of induced mutations using low-cost agarose-gel based TILLING. The methods are low-cost and designed to be applicable in most research settings.


Assuntos
Cicer , Cicer/genética , Raios gama/efeitos adversos , Mutação , Melhoramento Vegetal
3.
BMC Genomics ; 21(1): 845, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256606

RESUMO

BACKGROUND: Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS: Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS: We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.


Assuntos
Melhoramento Vegetal , Secale , Alelos , Variação Genética , Fenótipo , Secale/genética , Sementes
4.
G3 (Bethesda) ; 9(8): 2657-2666, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31213514

RESUMO

Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multi-dimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Sequencing performance was evaluated in a total of 32 pooled PCR products produced from 4096 chemically mutagenized Hordeum vulgare DNAs pooled in three dimensions. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Coffea/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
5.
Front Plant Sci ; 9: 1568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429862

RESUMO

In order to increase genetic variability for chickpea improvement, the Kabuli genotype, variety Ghab4, was treated with 280 Grays of gamma rays (Cobalt 60). Field characterization began with the M2 generation. A total of 135 M2 families were sown in the field resulting in approximately 4,000 plants. Traits related to phenology (days to flowering, days to maturity), plant morphology of vegetative parts (plant height, height of first pod, number of primary branches per plant) and yield (number of seeds per pod, total number of pods per plant, total number of seeds per plant, seed yield and hundred seed weight) were recorded and analyzed to evaluate genetic variability. An evaluation of the efficacy of low-cost TILLING (Targeting Induced Local Lesions IN Genomes) to discover mutations in the M2 generation was undertaken. Mutation screening focused on genes involved in resistance to two important diseases of chickpea; Ascochyta blight (AB) and Fusarium wilt (FW), as well as genes responsible for early flowering. Analysis of variance showed a highly significant difference among mutant families for all studied traits. The higher estimates of genetic parameters (genotypic and phenotypic coefficient of variation, broad sense heritability and genetic advance) were recorded for number of seeds per plant and yield. Total yield was highly significant and positively correlated with number of pods and seeds per plant. Path analysis revealed that the total number of seeds per plant had the highest positive direct effect followed by hundred seed weight parameter. One cluster from nine exhibited the highest mean values for total number of pods and seeds per plant as well as yield per plant. According to Dunnett's test, 37 M2 families superior to the control were determined for five agronomical traits. Pilot experiments with low-cost TILLING show that the seed stock used for mutagenesis is homogeneous and that small mutations do not predominate at the dosage used.

6.
Adv Biochem Eng Biotechnol ; 164: 139-160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29516116

RESUMO

Gene space: the final frontier in plant functional genomics. These are the voyages of TILLING, the reverse-genetics strategy that sought to boldly go where no-one had gone before by combining high-density chemical mutagenesis with high-throughput mutation discovery. Its 18-year mission has been to explore new technologies such as next generation sequencing and to seek out new strategies like in silico databases of catalogued EMS-induced mutations from entire mutant plant populations. This chapter is a clip show highlighting key milestones in the development of TILLING. Use of different technologies for the discovery of induced mutations, establishment of TILLING in different plant species, what has been learned about the effect of chemical mutagens on the plant genome, development of exome capture sequencing in wheat, and a look to the future of reverse-genetics with targeted genome editing are discussed. Graphical Abstract.


Assuntos
Genoma de Planta , Mutagênese , Genética Reversa , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Genética Reversa/tendências , Triticum/genética
7.
Plant Biotechnol J ; 2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29476650

RESUMO

Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study, we establish a low-coverage whole-genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar 'Novaria' and found that it harbours multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deletions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar 'Williams'. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy-treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects.

8.
Curr Protoc Plant Biol ; 1(4): 617-635, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31725963

RESUMO

Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. © 2016 by John Wiley & Sons, Inc.

9.
Biotechnol J ; 10(4): 536-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25511658

RESUMO

Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions. PCoA, phenogram, and cophenetic analyses separated RS from two J. curcas groups. Accessions from Mexico, Bolivia, Paraguay, Kenya, and Ethiopia with unknown origins were found in both groups. In general, there was a considerable overlap between individuals from different regions and countries. The Bayesian approach using STRUCTURE demonstrated two groups with a low genetic variation. Analysis of molecular varience revealed significant variation among individuals within populations. SNPs found by in silico analyses of Δ12 fatty acid desaturase indicated possible changes in gene expression and thus in fatty acid profiles. SNP variation was higher in the curcin gene compared to genes involved in oil production. Novel SNPs allowed separating toxic, non-toxic, and Mexican accessions. The present study confirms that human activities had a major influence on the genetic diversity of J. curcas, not only because of domestication, but also because of biased selection.


Assuntos
Jatropha/classificação , Jatropha/genética , África , Variação Genética , América do Sul
10.
Methods Mol Biol ; 1099: 77-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24243197

RESUMO

Molecular techniques have created the opportunity for great advances in plant mutation genetics and the science of mutation breeding. The powerful targeted induced local lesions in genomes (TILLING) technique has introduced the possibility of reverse genetics-the ability to screen for mutations at the DNA level prior to assessing phenotype. Fundamental to TILLING is the induction of mutant populations (or alternatively, the identification of mutants in the environment); and mutation induction requires an understanding and assessment of the appropriate mutagen dose required. The techniques of mutation induction, dose optimization, and TILLING are explained.


Assuntos
Análise Mutacional de DNA/métodos , Mutação , Plantas/genética , DNA de Plantas/genética , Genoma de Planta , Biologia Molecular/métodos , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação
11.
Plant Methods ; 9(1): 43, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24220637

RESUMO

BACKGROUND: Doubled haploidy is a fundamental tool in plant breeding as it provides the fastest way to generate populations of meiotic recombinants in a genetically fixed state. A wide range of methods has been developed to produce doubled haploid (DH) plants and recent advances promise efficient DH production in otherwise recalcitrant species. Since the cellular origin of the plants produced is not always certain, rapid screening techniques are needed to validate that the produced individuals are indeed homozygous and genetically distinct from each other. Ideal methods are easily implemented across species and in crops where whole genome sequence and marker resources are limited. RESULTS: We have adapted enzymatic mismatch cleavage techniques commonly used for TILLING (Targeting Induced Local Lesions IN Genomes) for the evaluation of heterozygosity in parental, F1 and putative DH plants. We used barley as a model crop and tested 26 amplicons previously developed for TILLING. Experiments were performed using self-extracted single-strand-specific nuclease and standard native agarose gels. Eleven of the twenty-six tested primers allowed unambiguous assignment of heterozygosity in material from F1 crosses and loss of heterozygosity in the DH plants. Through parallel testing of previously developed Simple Sequence Repeat (SSR) markers, we show that 3/32 SSR markers were suitable for screening. This suggests that enzymatic mismatch cleavage approaches can be more efficient than SSR based screening, even in species with well-developed markers. CONCLUSIONS: Enzymatic mismatch cleavage has been applied for mutation discovery in many plant species, including those with little or no available genomic DNA sequence information. Here, we show that the same methods provide an efficient system to screen for the production of DH material without the need of specialized equipment. This gene target based approach further allows discovery of novel nucleotide polymorphisms in candidate genes in the parental lines.

12.
Plant Biotechnol J ; 10(9): 1056-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22928630

RESUMO

Mutation discovery technologies have enabled the development of reverse genetics for many plant species and allowed sophisticated evaluation of the consequences of mutagenesis. Such methods are relatively straightforward for seed-propagated plants. To develop a platform suitable for vegetatively propagated species, we treated isolated banana shoot apical meristems with the chemical mutagen ethyl methanesulphonate, recovered plantlets and screened for induced mutations. A high density of GC-AT transition mutations were recovered, similar to that reported in seed-propagated polyploids. Through analysis of the inheritance of mutations, we observed that genotypically heterogeneous stem cells resulting from mutagenic treatment are rapidly sorted to fix a single genotype in the meristem. Further, mutant genotypes are stably inherited in subsequent generations. Evaluation of natural nucleotide variation showed the accumulation of potentially deleterious heterozygous alleles, suggesting that mutation induction may uncover recessive traits. This work therefore provides genotypic insights into the fate of totipotent cells after mutagenesis and suggests rapid approaches for mutation-based functional genomics and improvement of vegetatively propagated crops.


Assuntos
Musa/genética , Mutação Puntual , Metanossulfonato de Etila , Genótipo , Padrões de Herança , Musa/crescimento & desenvolvimento , Mutagênese , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Reprodução Assexuada
13.
Theor Appl Genet ; 121(7): 1381-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20589365

RESUMO

Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches.


Assuntos
Genoma de Planta , Genômica/métodos , Musa/genética , Fototropismo/genética , Polimorfismo de Nucleotídeo Único , Alelos , Cruzamento , Diploide , Pool Gênico , Humanos , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...