Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 15(1): 22-42, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450922

RESUMO

Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.


Assuntos
Demência , Epilepsia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Humanos , Potenciais da Membrana/fisiologia
2.
BMC Biol ; 21(1): 172, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568111

RESUMO

BACKGROUND: Behavior consists of the interaction between an organism and its environment, and is controlled by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consisting of only binary trial outcomes). RESULTS: To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable interactive arena for freely moving rats with multiple feeding areas, multiple sound sources, high-resolution behavioral tracking, and simultaneous electrophysiological recordings. The paper provides detailed information about the construction of the RIFF and the software used to control it. To illustrate the flexibility of the RIFF, we describe two complex tasks implemented in the RIFF, a foraging task and a sound localization task. Rats quickly learned to obtain rewards in both tasks. Neurons in the auditory cortex as well as neurons in the auditory field in the posterior insula had sound-driven activity during behavior. Remarkably, neurons in both structures also showed sensitivity to non-auditory parameters such as location in the arena and head-to-body angle. CONCLUSIONS: The RIFF provides insights into the cognitive capabilities and learning mechanisms of rats and opens the way to a better understanding of how brains control behavior. The ability to do so depends crucially on the combination of wireless electrophysiology and detailed behavioral documentation available in the RIFF.


Assuntos
Encéfalo , Neurônios , Ratos , Animais , Encéfalo/fisiologia , Neurônios/fisiologia
3.
Curr Biol ; 33(14): 3024-3030.e3, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37385255

RESUMO

Unexpected changes in incoming sensory streams are associated with large errors in predicting the deviant stimulus relative to a memory trace of past stimuli. Mismatch negativity (MMN) in human studies and the release from stimulus-specific adaptation (SSA) in animal models correlate with prediction errors and deviance detection.1 In human studies, violation of expectations elicited by an unexpected stimulus omission resulted in an omission MMN.2,3,4,5 These responses are evoked after the expected occurrence time of the omitted stimulus, implying that they reflect the violation of a temporal expectancy.6 Because they are often time locked to the end of the omitted stimulus,4,6,7 they resemble off responses. Indeed, suppression of cortical activity after the termination of the gap disrupts gap detection, suggesting an essential role for offset responses.8 Here, we demonstrate that brief gaps in short noise bursts in the auditory cortex of unanesthetized rats frequently evoke offset responses. Importantly, we show that omission responses are elicited when these gaps are expected but are omitted. These omission responses, together with the release from SSA of both onset and offset responses to rare gaps, form a rich and varied representation of prediction-related signals in the auditory cortex of unanesthetized rats, extending substantially and refining the representations described previously in anesthetized rats.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Humanos , Ratos , Animais , Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Modelos Animais , Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Eletroencefalografia
4.
Clin Exp Pharmacol Physiol ; 50(6): 453-462, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802086

RESUMO

The modulation of dopamine transmission evokes strong behavioural effects that can be achieved by commonly used psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioural arousal, whereas haloperidol is a non-specific D2-like dopamine receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here, we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behaviour in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioural effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviours, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia, which was induced by haloperidol and cocaine (except for natural killer T cells), is independent of D2-like dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. Moreover, the increased systemic D2-like dopaminergic activity after cocaine administration is a significant factor in retaining T CD3+ CD4+ lymphocytes and non-T/NK CD45RA+ cells in the spleen.


Assuntos
Cocaína , Células T Matadoras Naturais , Ratos , Animais , Cocaína/farmacologia , Haloperidol/farmacologia , Dopamina , Linfócitos T CD4-Positivos
5.
Acta Biomater ; 158: 292-307, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632879

RESUMO

The multicellular inflammatory encapsulation of implanted intracortical multielectrode arrays (MEA) is associated with severe deterioration of their field potentials' (FP) recording performance, which thus limits the use of brain implants in basic research and clinical applications. Therefore, extensive efforts have been made to identify the conditions in which the inflammatory foreign body response (FBR) is alleviated, or to develop methods to mitigate the formation of the inflammatory barrier. Here, for the first time, we show that (1) in young rats (74±8 gr, 4 weeks old at the onset of the experiments), cortical tissue recovery following MEA implantation proceeds with ameliorated inflammatory scar as compared to adult rats (242 ± 18 gr, 9 weeks old at the experimental onset); (2) in contrast to adult rats in which the Colony Stimulating factor 1 Receptor (CSF1R) antagonist chow eliminated ∼95% of the cortical microglia but not microglia adhering to the implant surfaces, in young rats the microglia adhering to the implant were eliminated along with the parenchymal microglia population. The removal of microglia adhering to the implant surfaces was correlated with improved recording performance by in-house fabricated Perforated Polyimide MEA Platforms (PPMP). These results support the hypothesis that microglia adhering to the surface of the electrodes, rather than the multicellular inflammatory scar, is the major underlying mechanism that deteriorates implant recording performance, and that young rats provide an advantageous model to study months-long, multisite electrophysiology in freely behaving rats. STATEMENT OF SIGNIFICANCE: Multisite electrophysiological recordings and stimulation devices play central roles in basic brain research and medical applications. The insertion of multielectrode-array platforms into the brain's parenchyma unavoidably injures the tissue, and initiates a multicellular inflammatory cascade culminating in the formation of an encapsulating scar tissue (the foreign body response-FBR). The dominant view, which directs most current research efforts to mitigate the FBR, holds that the FBR is the major hurdle to effective electrophysiological use of neuroprobes. By contrast, this report demonstrates that microglia adhering to the surface of a neuroimplants, rather than the multicellular FBR, underlie the performance deterioration of neuroimplants. These findings pave the way to the development of novel and focused strategies to overcome the functional deterioration of neuroimplants.


Assuntos
Encéfalo , Reação a Corpo Estranho , Próteses Neurais , Animais , Ratos , Encéfalo/patologia , Encéfalo/cirurgia , Cicatriz/patologia , Reação a Corpo Estranho/patologia , Próteses Neurais/efeitos adversos , Fatores Etários
6.
Front Neurosci ; 15: 764448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880722

RESUMO

Despite increasing use of in vivo multielectrode array (MEA) implants for basic research and medical applications, the critical structural interfaces formed between the implants and the brain parenchyma, remain elusive. Prevailing view assumes that formation of multicellular inflammatory encapsulating-scar around the implants [the foreign body response (FBR)] degrades the implant electrophysiological functions. Using gold mushroom shaped microelectrodes (gMµEs) based perforated polyimide MEA platforms (PPMPs) that in contrast to standard probes can be thin sectioned along with the interfacing parenchyma; we examined here for the first time the interfaces formed between brains parenchyma and implanted 3D vertical microelectrode platforms at the ultrastructural level. Our study demonstrates remarkable regenerative processes including neuritogenesis, axon myelination, synapse formation and capillaries regrowth in contact and around the implant. In parallel, we document that individual microglia adhere tightly and engulf the gMµEs. Modeling of the formed microglia-electrode junctions suggest that this configuration suffice to account for the low and deteriorating recording qualities of in vivo MEA implants. These observations help define the anticipated hurdles to adapting the advantageous 3D in vitro vertical-electrode technologies to in vivo settings, and suggest that improving the recording qualities and durability of planar or 3D in vivo electrode implants will require developing approaches to eliminate the insulating microglia junctions.

7.
Front Neurosci ; 15: 646914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841088

RESUMO

Inflammatory encapsulation of implanted cortical-neuro-probes [the foreign body response (FBR)] severely limits their use in basic brain research and in clinical applications. A better understanding of the inflammatory FBR is needed to effectively mitigate these critical limitations. Combining the use of the brain permeant colony stimulating factor 1 receptor inhibitor PLX5622 and a perforated polyimide-based multielectrode array platform (PPMP) that can be sectioned along with the surrounding tissue, we examined the contribution of microglia to the formation of inflammatory FBR. To that end, we imaged the inflammatory processes induced by PPMP implantations after eliminating 89-94% of the cortical microglia by PLX5622 treatment. The observations showed that: (I) inflammatory encapsulation of implanted PPMPs proceeds by astrocytes in microglia-free cortices. The activated astrocytes adhered to the PPMP's surfaces. This suggests that the roles of microglia in the FBR might be redundant. (II) PPMP implantation into control or continuously PLX5622-treated rats triggered a localized surge of microglia mitosis. The daughter cells that formed a "cloud" of short-lived (T 1 / 2 ≤ 14 days) microglia around and in contact with the implant surfaces were PLX5622 insensitive. (III) Neuron degeneration by PPMP implantation and the ensuing recovery in time, space, and density progressed in a similar manner in the cortices following 89-94% depletion of microglia. This implies that microglia do not serve a protective role with respect to the neurons. (IV) Although the overall cell composition and dimensions of the encapsulating scar in PLX5622-treated rats differed from the controls, the recorded field potential (FP) qualities and yield were undistinguishable. This is accounted for by assuming that the FP amplitudes in the control and PLX5622-treated rats were related to the seal resistance formed at the interface between the adhering microglia and/or astrocytes and the PPMP platform rather than across the scar tissue. These observations suggest that the prevention of both astrocytes and microglia adhesion to the electrodes is required to improve FP recording quality and yield.

8.
Prog Neurobiol ; 202: 102049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845166

RESUMO

Auditory processing begins by decomposing sounds into their frequency components, raising the question of where the representation of sounds as wholes emerges in the auditory system. To address this question, we used stimulus-specific adaptation (SSA), the reduction in the responses of a neuron to a common sound (standard) which does not generalize to another, rare sound (deviant). SSA to tone frequency has been demonstrated in multiple stations of the auditory pathway, including the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex. We designed wideband stimuli (tone clouds) that have identical frequency components but are nevertheless distinct. Tone clouds evoked early and substantial SSA in primary auditory cortex (A1) but only late and minor SSA in IC and MGB. These results imply that while in IC and MGB sounds are largely represented in terms of their frequency components, in A1 they are represented as abstract entities.


Assuntos
Córtex Auditivo , Colículos Inferiores , Estimulação Acústica , Adaptação Fisiológica , Vias Auditivas , Corpos Geniculados , Humanos
9.
Front Neurosci ; 14: 926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982683

RESUMO

The deterioration of field potential (FP) recording quality and yield by in vivo multielectrode arrays (MEA) within days to weeks of implantation severely limits progress in basic and applied brain research. The prevailing hypothesis is that implantation of MEA platforms initiate and perpetuate inflammatory processes which culminate in the formation of scar tissue (the foreign body response, FBR) around the implant. The FBR leads to progressive degradation of the recording qualities by displacing neurons away from the electrode surfaces, increasing the resistance between neurons (current source) and the sensing pads and by reducing the neurons' excitable membrane properties and functional synaptic connectivity through the release of pro-inflammatory cytokines. Meticulous attempts to causally relate the cellular composition, cell density, and electrical properties of the FBR have failed to unequivocally correlate the deterioration of recording quality with the histological severity of the FBR. Based on confocal and electron microscope analysis of thin sections of polyimide based MEA implants along with the surrounding brain tissue at different points in time after implantation, we propose that abrupt FP amplitude attenuation occurs at the implant/brain-parenchyma junction as a result of high seal resistance insulation formed by adhering microglia to the implant surfaces. In contrast to the prevailing hypothesis, that FP decrease occurs across the encapsulating scar of the implanted MEA, this mechanism potentially explains why no correlations have been found between the dimensions and density of the FBR and the recording quality. Recognizing that the seal resistance formed by adhering-microglia to the implant constitutes a downstream element undermining extracellular FP recordings, suggests that approaches to mitigate the formation of the insulating glial could lead to improved recording quality and yield.

10.
PLoS One ; 15(3): e0221541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210448

RESUMO

Stimulus-specific adaptation (SSA) is the reduction in responses to a common stimulus that does not generalize, or only partially generalizes, to other stimuli. SSA has been studied mainly with sounds that bear no behavioral meaning. We hypothesized that the acquisition of behavioral meaning by a sound should modify the amount of SSA evoked by that sound. To test this hypothesis, we used fear conditioning in rats, using two word-like stimuli, derived from the English words "danger" and "safety", as well as pure tones. One stimulus (CS+) was associated with a foot shock whereas the other stimulus (CS-) was presented without a concomitant foot shock. We recorded neural responses to the auditory stimuli telemetrically, using chronically implanted multi-electrode arrays in freely moving animals before and after conditioning. Consistent with our hypothesis, SSA changed in a way that depended on the behavioral role of the sound: the contrast between standard and deviant responses remained the same or decreased for CS+ stimuli but increased for CS- stimuli, showing that SSA is shaped by experience. In most cases the sensory responses underlying these changes in SSA increased following conditioning. Unexpectedly, the responses to CS+ word-like stimuli showed a specific, large decrease, which we interpret as evidence for substantial inhibitory plasticity.


Assuntos
Estimulação Acústica/métodos , Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Som , Vigília/fisiologia , Animais , Córtex Auditivo/fisiologia , Escala de Avaliação Comportamental , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos/fisiologia , Medo/fisiologia , Feminino , Interneurônios/fisiologia , Ratos
11.
Cereb Cortex ; 30(8): 4465-4480, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32147725

RESUMO

The ability to detect short gaps in noise is an important tool for assessing the temporal resolution in the auditory cortex. However, the mere existence of responses to temporal gaps bounded by two short broadband markers is surprising, because of the expected short-term suppression that is prevalent in auditory cortex. Here, we used in-vivo intracellular recordings in anesthetized rats to dissect the synaptic mechanisms that underlie gap-related responses. When a gap is bounded by two short markers, a gap termination response was evoked by the onset of the second marker with minimal contribution from the offset of the first marker. Importantly, we show that the gap termination response was driven by a different (potentially partially overlapping) synaptic population than that underlying the onset response to the first marker. This recruitment of additional synaptic resources is a novel mechanism contributing to the important perceptual task of gap detection.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Feminino , Ratos
12.
Front Neuroanat ; 13: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213993

RESUMO

The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 µm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.

13.
Data Brief ; 21: 1451-1457, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456270

RESUMO

The primary data are the impulse responses that were recorded in an echoic environment, using a set of twelve loudspeakers and a microphone. They were used as a part of an acoustic calibration process of large environments, as presented by Kazakov and Nelken (DOI: 10.1016/j.jneumeth.2018.08.025; Kazakov and Nelken, 2018). The impulse responses can be also used to localize the microphone in 3D (multi-lateration). The required audio files and the MATLAB code allows a complete reproduction of the experiment.

14.
PLoS One ; 13(6): e0197678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874246

RESUMO

Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminating the expectations set by the standard ('deviant among many standards'). When the response to a tone when deviant (against a single standard) is larger than the responses to the same tone in the control sequence, it is concluded that true deviance sensitivity occurs. In primary auditory cortex of anesthetized rats, responses to deviants and to the same tones in the control condition are comparable in size. We recorded local field potentials and multiunit activity from the auditory cortex of awake, freely moving rats, implanted with 32-channel drivable microelectrode arrays and using telemetry. We observed highly significant SSA in the awake state. Moreover, the responses to a tone when deviant were significantly larger than the responses to the same tone in the control condition. These results establish the presence of true deviance sensitivity in primary auditory cortex in awake rats.


Assuntos
Adaptação Fisiológica , Córtex Auditivo/fisiopatologia , Vigília/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos , Ratos
15.
Brain Res ; 1677: 101-117, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947380

RESUMO

The functions of the claustrum are not well understood. Few studies explore its electrophysiological properties in awake animals. Here, we address this lacuna by recording spontaneous local field potential (LFP) activity in the anterior claustrum of rats freely exploring open field environments under differing conditions (light; dark; with, without an object present). We found three peaks in the LFP power spectral density (PSD) at 1-4Hz, 4-7Hz and 8-12Hz. Two of those peaks, in the 1-4Hz and 8-12Hz bands, were present in almost all recordings and dominated the power spectrum. The power or frequency of detected peaks in some cases changed depending on the environmental context. The power of detected frequency bands of spontaneous LFPs showed varied patterns of distribution across the experimental arena. The 8-12Hz band was predominantly found at running speeds of up to 6cm/s. We suggest that spontaneous LFP activity in the anterior claustrum depends on the environmental context and running speed of the animal.


Assuntos
Gânglios da Base/fisiologia , Comportamento Exploratório/fisiologia , Atividade Motora/fisiologia , Percepção Espacial/fisiologia , Animais , Eletrodos Implantados , Meio Ambiente , Masculino , Células de Lugar/fisiologia , Ratos , Corrida/fisiologia
16.
Brain Neurosci Adv ; 1: 2398212817718962, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32166134

RESUMO

The claustrum is a highly conserved but enigmatic structure, with connections to the entire cortical mantle, as well as to an extended and extensive range of heterogeneous subcortical structures. Indeed, the human claustrum is thought to have the highest number of connections per millimetre cubed of any other brain region. While there have been relatively few functional investigations of the claustrum, many theoretical suggestions have been put forward, including speculation that it plays a key role in the generation of consciousness in the mammalian brain. Other claims have been more circumspect, suggesting that the claustrum has a particular role in, for example, orchestrating cortical activity, spatial information processing or decision making. Here, we selectively review certain key recent anatomical, electrophysiological and behavioural experimental advances in claustral research and present evidence that calls for a reassessment of its anatomical boundaries in the rodent. We conclude with some open questions for future research.

17.
Front Behav Neurosci ; 9: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528150

RESUMO

Damage involving the anterior thalamic and adjacent rostral thalamic nuclei may result in a severe anterograde amnesia, similar to the amnesia resulting from damage to the hippocampal formation. Little is known, however, about the information represented in these nuclei. To redress this deficit, we recorded units in three rostral thalamic nuclei in freely-moving rats [the parataenial nucleus (PT), the anteromedial nucleus (AM) and nucleus reuniens NRe]. We found units in these nuclei possessing previously unsuspected spatial properties. The various cell types show clear similarities to place cells, head direction cells, and perimeter/border cells described in hippocampal and parahippocampal regions. Based on their connectivity, it had been predicted that the anterior thalamic nuclei process information with high spatial and temporal resolution while the midline nuclei have more diffuse roles in attention and arousal. Our current findings strongly support the first prediction but directly challenge or substantially moderate the second prediction. The rostral thalamic spatial cells described here may reflect direct hippocampal/parahippocampal inputs, a striking finding of itself, given the relative lack of place cells in other sites receiving direct hippocampal formation inputs. Alternatively, they may provide elemental thalamic spatial inputs to assist hippocampal spatial computations. Finally, they could represent a parallel spatial system in the brain.

18.
Front Behav Neurosci ; 9: 250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557060

RESUMO

Discrete populations of brain cells signal differing types of spatial information. These "spatial cells" are largely confined to a closely-connected network of sites. We describe here, for the first time, cells in the anterior claustrum of the freely-moving rat encoding place, boundary and object information. This novel claustral spatial signal potentially directly modulates a wide variety of anterior cortical regions. We hypothesize that one of the functions of the claustrum is to provide information about body position, boundaries and landmark information, enabling dynamic control of behavior.

19.
Elife ; 32014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25024427

RESUMO

Discrete populations of brain cells signal heading direction, rather like a compass. These 'head direction' cells are largely confined to a closely-connected network of sites. We describe, for the first time, a population of head direction cells in nucleus reuniens of the thalamus in the freely-moving rat. This novel subcortical head direction signal potentially modulates the hippocampal CA fields directly and, thus, informs spatial processing and memory.


Assuntos
Núcleos da Linha Média do Tálamo/anatomia & histologia , Núcleos da Linha Média do Tálamo/citologia , Núcleos da Linha Média do Tálamo/fisiologia , Animais , Comportamento Animal , Fenômenos Eletrofisiológicos , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Luz , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Ratos , Comportamento Espacial
20.
Front Syst Neurosci ; 7: 45, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24009563

RESUMO

The anterior thalamic nuclei (ATN), a central component of Papez' circuit, are generally assumed to be key constituents of the neural circuits responsible for certain categories of learning and memory. Supporting evidence for this contention is that damage to either of two brain regions, the medial temporal lobe and the medial diencephalon, is most consistently associated with anterograde amnesia. Within these respective regions, the hippocampal formation and the ATN (anteromedial, anteroventral, and anterodorsal) are the particular structures of interest. The extensive direct and indirect hippocampal-anterior thalamic interconnections and the presence of theta-modulated cells in both sites further support the hypothesis that these structures constitute a neuronal network crucial for memory and cognition. The major tool in understanding how the brain processes information is the analysis of neuronal output at each hierarchical level along the pathway of signal propagation coupled with neuroanatomical studies. Here, we discuss the electrophysiological properties of cells in the ATN with an emphasis on their role in spatial navigation. In addition, we describe neuroanatomical and functional relationships between the ATN and hippocampal formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...