Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 12: 122, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22827462

RESUMO

BACKGROUND: Previous studies have proposed that mammalian toll like receptors (TLRs) have evolved under diversifying selection due to their role in pathogen detection. To determine if this is the case, we examined the extent of adaptive evolution in the TLR5 gene in both individual species and defined clades of the mammalia. RESULTS: In support of previous studies, we find evidence of adaptive evolution of mammalian TLR5. However, we also show that TLR5 genes of domestic livestock have a concentration of single nucleotide polymorphisms suggesting a specific signature of adaptation. Using codon models of evolution we have identified a concentration of rapidly evolving codons within the TLR5 extracellular domain a site of interaction between host and the bacterial surface protein flagellin. CONCLUSIONS: The results suggest that interactions between pathogen and host may be driving adaptive change in TLR5 by competition between species. In support of this, we have identified single nucleotide polymorphisms (SNP) in sheep and cattle TLR5 genes that are co-localised and co-incident with the predicted adaptive codons suggesting that adaptation in this region of the TLR5 gene is on-going in domestic species.


Assuntos
Bovinos/genética , Evolução Molecular , Seleção Genética , Ovinos/genética , Receptor 5 Toll-Like/genética , Adaptação Biológica/genética , Animais , Bactérias/genética , Códon , Flagelina/genética , Interações Hospedeiro-Patógeno/genética , Gado/genética , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
2.
Vet Immunol Immunopathol ; 148(1-2): 90-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21621277

RESUMO

Farm animals remain at risk of endemic, exotic and newly emerging viruses. Vaccination is often promoted as the best possible solution, and yet for many pathogens, either there are no appropriate vaccines or those that are available are far from ideal. A complementary approach to disease control may be to identify genes and chromosomal regions that underlie genetic variation in disease resistance and response to vaccination. However, identification of the causal polymorphisms is not straightforward as it generally requires large numbers of animals with linked phenotypes and genotypes. Investigation of genes underlying complex traits such as resistance or response to viral pathogens requires several genetic approaches including candidate genes deduced from knowledge about the cellular pathways leading to protection or pathology, or unbiased whole genome scans using markers spread across the genome. Evidence for host genetic variation exists for a number of viral diseases in cattle including bovine respiratory disease and anecdotally, foot and mouth disease virus (FMDV). We immunised and vaccinated a cattle cross herd with a 40-mer peptide derived from FMDV and a vaccine against bovine respiratory syncytial virus (BRSV). Genetic variation has been quantified. A candidate gene approach has grouped high and low antibody and T cell responders by common motifs in the peptide binding pockets of the bovine major histocompatibility complex (BoLA) DRB3 gene. This suggests that vaccines with a minimal number of epitopes that are recognised by most cattle could be designed. Whole genome scans using microsatellite and single nucleotide polymorphism (SNP) markers has revealed many novel quantitative trait loci (QTL) and SNP markers controlling both humoral and cell-mediated immunity, some of which are in genes of known immunological relevance including the toll-like receptors (TLRs). The sequencing, assembly and annotation of livestock genomes and is continuing apace. In addition, provision of high-density SNP chips should make it possible to link phenotypes with genotypes in field populations without the need for structured populations or pedigree information. This will hopefully enable fine mapping of QTL and ultimate identification of the causal gene(s). The research could lead to selection of animals that are more resistant to disease and new ways to improve vaccine efficacy.


Assuntos
Bovinos/imunologia , Infecções por Vírus Respiratório Sincicial/veterinária , Vírus Sincicial Respiratório Bovino/imunologia , Vacinas Virais/imunologia , Animais , Bovinos/genética , Resistência à Doença , Variação Genética , Cadeias HLA-DRB3/genética , Cadeias HLA-DRB3/imunologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia
3.
BMC Genomics ; 10: 216, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19432955

RESUMO

BACKGROUND: Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. RESULTS: We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. CONCLUSION: This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes.


Assuntos
Hibridização Genômica Comparativa , Locos de Características Quantitativas , Receptores Toll-Like/genética , Animais , Bovinos , Cromossomos de Mamíferos , Suscetibilidade a Doenças , Genômica/métodos , Humanos , Imunidade Inata/genética , Camundongos , Mapeamento de Híbridos Radioativos , Ovinos/genética , Suínos/genética
4.
Trends Immunol ; 30(3): 124-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19211304

RESUMO

Toll-like receptors (TLRs) are a family of pattern recognition receptors that are an important link between innate and adaptive immunity. Many vaccines incorporate ligands for TLRs as an adjuvant and are developed in rodent models, with the resulting data transferred to other species. Vaccine features can be improved markedly by emphasizing the biological relevance when evaluating other animal models for host-pathogen interaction and by taking greater advantage of the unique experimental opportunities that are offered by large animal, non-rodent models. Here, we aim to summarize our current knowledge of species-specific TLR responses and briefly discuss that vaccine efficacy in relevant host species might be improved by considering the species-specific TLR responses.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Receptores Toll-Like/imunologia , Animais , Bovinos , Variação Genética , Humanos , Ligantes , Estrutura Terciária de Proteína/genética , Especificidade da Espécie , Receptores Toll-Like/química , Receptores Toll-Like/genética
5.
BMC Evol Biol ; 8: 288, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18937834

RESUMO

BACKGROUND: There is accumulating evidence that polymorphism in Toll-like receptor (TLR) genes might be associated with disease resistance or susceptibility traits in livestock. Polymorphic sites affecting TLR function should exhibit signatures of positive selection, identified as a high ratio of non-synonymous to synonymous nucleotide substitutions (omega). Phylogeny based models of codon substitution based on estimates of omega for each amino acid position can therefore offer a valuable tool to predict sites of functional relevance. We have used this approach to identify such polymorphic sites within the bovine TLR2 genes from ten Bos indicus and Bos taurus cattle breeds. By analysing TLR2 gene phylogeny in a set of mammalian species and a subset of ruminant species we have estimated the selective pressure on individual sites and domains and identified polymorphisms at sites of putative functional importance. RESULTS: The omega were highest in the mammalian TLR2 domains thought to be responsible for ligand binding and lowest in regions responsible for heterodimerisation with other TLR-related molecules. Several positively-selected sites were detected in or around ligand-binding domains. However a comparison of the ruminant subset of TLR2 sequences with the whole mammalian set of sequences revealed that there has been less selective pressure among ruminants than in mammals as a whole. This suggests that there have been functional changes during ruminant evolution. Twenty newly-discovered non-synonymous polymorphic sites were identified in cattle. Three of them were localised at positions shaped by positive selection in the ruminant dataset (Leu227Phe, His305Pro, His326Gln) and in domains involved in the recognition of ligands. His326Gln is of particular interest as it consists of an exchange of differentially-charged amino acids at a position which has previously been shown to be crucial for ligand binding in human TLR2. CONCLUSION: Within bovine TLR2, polymorphisms at amino acid positions 227, 305 and 326 map to functionally important sites of TLR2 and should be considered as candidate SNPs for immune related traits in cattle. A final proof of their functional relevance requires further studies to determine their functional effect on the immune response after stimulation with relevant ligands and/or their association with immune related traits in animals.


Assuntos
Bovinos/genética , Evolução Molecular , Seleção Genética , Receptor 2 Toll-Like/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos/imunologia , Sequência Conservada , Primers do DNA , Funções Verossimilhança , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Relação Estrutura-Atividade
6.
BMC Genomics ; 7: 283, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17087818

RESUMO

BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.


Assuntos
Genoma , Mapeamento de Híbridos Radioativos/métodos , Animais , Bovinos , Cromossomos/genética , Cromossomos Artificiais Bacterianos/genética , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Análise de Sequência de DNA
7.
J Dairy Res ; 71(2): 188-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15190947

RESUMO

We assessed polymorphisms in exon IV of the kappa-casein gene (CSN3) in ten different breeds of domestic goat (Capra hircus) from three continents and in three related wild caprine taxa (Capra ibex, Capra sibirica and Capra aegagrus). Thirty-five DNA samples were sequenced within a 558 bp fragment of exon IV. Nine polymorphic sites were identified in domestic goat, including four new polymorphisms. In addition to four previously described polymorphic positions, a total of 13 polymorphisms allowed the identification of 13 DNA variants, corresponding to 10 protein variants. Because of conflicting nomenclature of these variants, we propose a standardized allele designation. CSN3*A, CSN3*B, and CSN3*D were found as widely distributed alleles in European goat breeds. Within Capra ibex we identified three variants and showed that the sequence of Capra aegagrus is identical to the most common Capra hircus variant, consistent with Capra aegagrus being the wild progenitor of domestic goats. A dendrogram was drawn to represent the molecular network between the caprine CSN3 variants.


Assuntos
Caseínas/genética , Cabras/genética , Polimorfismo Genético , Análise de Sequência de DNA , Alelos , Sequência de Aminoácidos , Animais , Animais Domésticos/genética , Animais Selvagens/genética , DNA/análise , Genótipo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Especificidade da Espécie , Terminologia como Assunto
8.
Genet Sel Evol ; 36(2): 243-57, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15040901

RESUMO

The genetic diversity of the casein locus in cattle was studied on the basis of haplotype analysis. Consideration of recently described genetic variants of the casein genes which to date have not been the subject of diversity studies, allowed the identification of new haplotypes. Genotyping of 30 cattle breeds from four continents revealed a geographically associated distribution of haplotypes, mainly defined by frequencies of alleles at CSN1S1 and CSN3. The genetic diversity within taurine breeds in Europe was found to decrease significantly from the south to the north and from the east to the west. Such geographic patterns of cattle genetic variation at the casein locus may be a result of the domestication process of modern cattle as well as geographically differentiated natural or artificial selection. The comparison of African Bos taurus and Bos indicus breeds allowed the identification of several Bos indicus specific haplotypes (CSN1S1*C-CSN2*A2-CSN3*AI / CSN3*H) that are not found in pure taurine breeds. The occurrence of such haplotypes in southern European breeds also suggests that an introgression of indicine genes into taurine breeds could have contributed to the distribution of the genetic variation observed.


Assuntos
Caseínas/genética , Bovinos/genética , Variação Genética , Haplótipos/genética , Filogenia , Animais , Frequência do Gene , Geografia , Modelos Genéticos , Análise de Componente Principal , Especificidade da Espécie
9.
Nat Genet ; 35(4): 311-3, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634648

RESUMO

Milk from domestic cows has been a valuable food source for over 8,000 years, especially in lactose-tolerant human societies that exploit dairy breeds. We studied geographic patterns of variation in genes encoding the six most important milk proteins in 70 native European cattle breeds. We found substantial geographic coincidence between high diversity in cattle milk genes, locations of the European Neolithic cattle farming sites (>5,000 years ago) and present-day lactose tolerance in Europeans. This suggests a gene-culture coevolution between cattle and humans.


Assuntos
Bovinos/genética , Evolução Molecular , Variação Genética , Lactase/genética , Proteínas do Leite/genética , Animais , Europa (Continente) , Feminino , Geografia , Humanos , Lactase/metabolismo , Intolerância à Lactose , Leite , Proteínas do Leite/metabolismo , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...