Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030194

RESUMO

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Assuntos
Glicemia , Hiperglicemia , Ratos , Animais , Receptores Acoplados a Proteínas G , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Pirrolidinas/farmacologia , Pirrolidinas/química , Insulina
2.
Pharmacol Res Perspect ; 7(3): e00488, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31149343

RESUMO

In this study, we describe a novel approach for collecting bile from dogs and cynomolgus monkeys for metabolite profiling, ultrasound-guided cholecystocentesis (UCC). Sampling bile by UCC twice within 24 hours was well tolerated by dogs and monkeys. In studies with atorvastatin (ATV) the metabolite profiles were similar in bile obtained through UCC and from bile duct-cannulated (BDC) dogs. Similar results were observed in UCC and BDC monkeys as well. In both monkey and dog, the primary metabolic pathway observed for ATV was oxidative metabolism. The 2-hydroxy- and 4-hydroxyatorvastatin metabolites were the major oxidation products, which is consistent with previously published metabolite profiles. S-cysteine and glucuronide conjugates were also observed. UCC offers a viable alternative to bile duct cannulation for collection of bile for metabolite profiling of compounds that undergo biliary excretion, given the similar metabolite profiles in bile obtained via each method. Use of UCC for metabolite profiling may reduce the need for studies using BDC animals, a resource-intensive model.


Assuntos
Atorvastatina/administração & dosagem , Bile/química , Metabolômica/métodos , Animais , Atorvastatina/farmacocinética , Ductos Biliares/cirurgia , Cromatografia Líquida de Alta Pressão , Cães , Glucuronídeos/análise , Macaca fascicularis , Estresse Oxidativo , Ultrassonografia de Intervenção
3.
Toxicol Pathol ; 47(4): 461-468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018785

RESUMO

Anatomic pathology and clinical pathology end points are standard components of almost every nonclinical general toxicity study conducted during the risk assessment of novel pharmaceuticals and chemicals. On occasion, an ultrastructural pathology evaluation using transmission electron microscopy (TEM) may be included in nonclinical toxicity studies. Transmission electron microscopy is most commonly used when a light microscopic finding may require further characterization that could inform on the pathogenesis and/or mechanism of action. Regulatory guidance do not address the use of TEM in general study designs nor whether these assessments should be performed in laboratories conducted in compliance with Good Laboratory Practices. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current practices on the use of TEM in nonclinical toxicity studies. The Working Group constructed a survey sent to members of societies of toxicologic pathology in the United States, Europe, Britain, and Japan, and responses were collected through the STP for evaluation by the Working Group. The survey results and regulatory context are discussed, as are "points to consider" from the collective experience of the Working Group. This survey indicates that TEM remains an essential diagnostic option for complementing toxicologic pathology evaluations. *This Points to Consider article is a product of a Society of Toxicologic Pathology (STP) Working Group commissioned by the Scientific and Regulatory Policy Committee (SRPC) of the STP. It has been reviewed and approved by the SRPC and Executive Committee of the STP but it does not represent a formal Best Practice recommendation of the Society; rather, it is intended to provide key "points to consider" in designing nonclinical studies or interpreting data from toxicity and safety studies intended to support regulatory submissions. The points expressed in this document are those of the authors and do not reflect views or policies of the employing institutions. Readers of Toxicologic Pathology are encouraged to send their thoughts on these articles or ideas for new topics to the Editor.


Assuntos
Microscopia Eletrônica de Transmissão , Patologia Clínica/métodos , Toxicologia/métodos , Comitês Consultivos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Guias como Assunto , Humanos , Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica de Transmissão/normas , Patologia Clínica/legislação & jurisprudência , Patologia Clínica/normas , Sociedades Científicas , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Toxicologia/legislação & jurisprudência , Toxicologia/normas , Estados Unidos , United States Food and Drug Administration
4.
Artigo em Inglês | MEDLINE | ID: mdl-30553974

RESUMO

INTRODUCTION: Low intrinsic solubility leading to poor oral bioavailability is a common challenge in drug discovery that can often be overcome by formulation strategies, however, it remains a potential limitation that can pose challenges for early risk assessment and represent a significant obstacle to drug development. We identified a selective inhibitor (BMS-986126) of the IL-1 receptor-associated kinase 4 (IRAK4) with favorable properties as a lead candidate, but with unusually low intrinsic solubility of <1 µg/mL. METHODS: Conventional histopathology identified the issue of crystal formation in vivo. Subsequent investigative work included confocal Raman micro-spectroscopy, MALDI-MS, polarized light microscopy of fresh wet-mount tissue scrapings and transmission electron microscopy. RESULTS: BMS-986126 was advanced into a 2-week toxicology study in rats. The main finding in this study was minimal granulomatous inflammation in the duodenum, associated with the presence of birefringent crystals at the highest dosage of 100 mg/kg/day. Considering the safety margin, and the single location of the lesion, BMS-986126 was further progressed into IND-enabling toxicology studies where tolerability deteriorated with increasing dosing duration. Birefringent crystals and granulomatous inflammation were detected in multiple organs at dosages ≥20 mg/kg/day. Raman spectroscopy confirmed the identity of the crystals as BMS-986126. Therefore, follow up investigations were conducted to further characterize drug crystallization and to evaluate detection methods for their potential to reliably detect in vivo crystallization early. DISCUSSION: The purpose of our efforts was to identify critical factors influencing in vivo drug crystallization and to provide a preliminary assessment (based on one compound) which method would be best suited for identifying crystals. Results indicated a combination of methods was required to provide a complete assessment of drug crystallization and that a simple technique, scraping of freshly collected tissue followed by evaluation under polarizing light was suitable for detecting crystals. However, dosing for 2 weeks was required for crystals to grow to a clearly detectable size.


Assuntos
Cristalização , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Animais , Disponibilidade Biológica , Descoberta de Drogas , Duodeno/patologia , Feminino , Quinases Associadas a Receptores de Interleucina-1/química , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Cultura Primária de Células , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Risco , Solubilidade , Análise Espectral Raman
5.
Toxicol Pathol ; 46(2): 147-157, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29471778

RESUMO

The purpose of this study was to establish a 2-stage model of urinary bladder carcinogenesis in male Sprague-Dawley rats to identify tumor promoters. In phase 1 of the study, rats ( n = 170) were administered 100 mg/kg of the tumor initiator, N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), twice weekly by oral gavage (po) for a period of 6 weeks. Phase 2 consisted of dividing rats into 4 groups ( n = 40 per group) and administering one of the following for 26 weeks to identify putative tumor promoters: (1) vehicle po, (2) 25 mg/kg/day rosiglitazone po, (3) 5% dietary sodium l-ascorbate, and (4) 3% dietary uracil. Rats were necropsied after 7.5 months, and urinary bladders were evaluated by histopathology. BBN/vehicle treatments induced the development of urothelial hyperplasia (83%) and papillomas (15%) but no transitional cell carcinomas (TCCs). Rosiglitazone increased the incidence and severity of papillomas (93%) and resulted in TCC in 10% of treated rats. Uracil was the most effective tumor promoter in our study and increased the incidence of papillomas (90%) and TCC (74%). Sodium ascorbate decreased the incidence of urothelial hyperplasia (63%) and did not increase the incidence of urothelial papillomas or TCC. These data confirm the capacity of our 2-stage model to identify urinary bladder tumor promoters.


Assuntos
Ácido Ascórbico/toxicidade , Carcinógenos/farmacologia , Carcinoma de Células de Transição/induzido quimicamente , Rosiglitazona/toxicidade , Uracila/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/efeitos dos fármacos
6.
Vet Pathol ; 55(2): 331-340, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29338616

RESUMO

C-terminal Src kinase (Csk) is one of the critical negative regulators of the Src family of kinases. The Src family of kinases are nonreceptor tyrosine kinases that regulate inflammation, cell proliferation, motility, and adhesion. To investigate potential histologic lesions associated with systemic loss of Csk gene activity in adult mice, conditional Csk-knockout mice were examined. Cre-mediated systemic excision of Csk induced by tamoxifen treatment resulted in multiorgan inflammation. Specifically, induction of Csk gene excision with three days of tamoxifen treatment resulted in greater than 90% gene excision. Strikingly, these mice developed enteritis that ranged from minimal and suppurative to severe, fibrinonecrosuppurative and hemorrhagic. Other inflammatory lesions included suppurative pneumonia, gastritis, and myocarditis, and increased numbers of inflammatory cells within the hepatic parenchyma. When tamoxifen treatment was reduced from three days to one day in an effort to lower the level of Csk gene excision and limit lesion development, the mice developed severe suppurative to pyogranulomatous pneumonia and minimal to mild suppurative enteritis. Lesions observed secondary to Csk gene excision suggest important roles for Csk in downregulating the proinflammatory activity of the Src family of kinases and limiting neutrophil-mediated inflammation.


Assuntos
Inflamação/veterinária , Camundongos Knockout/metabolismo , Supuração/veterinária , Quinases da Família src/metabolismo , Animais , Southern Blotting , Proteína Tirosina Quinase CSK , Feminino , Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Supuração/metabolismo , Supuração/patologia
7.
Toxicol Sci ; 155(2): 348-362, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864544

RESUMO

BMS-986094, a 2'-C-methylguanosine prodrug that was in development for treatment of chronic hepatitis C infection was withdrawn from Phase 2 clinical trials because of unexpected cardiac and renal adverse events. Investigative nonclinical studies were conducted to extend the understanding of these findings using more comprehensive endpoints. BMS-986094 was given orally to female CD-1 mice (25 and 150 mg/kg/d) for 2 weeks (53/group) and to cynomolgus monkeys (15 and 30 mg/kg/d) for up to 6 weeks (2-3/sex/group for cardiovascular safety, and 5/sex/group for toxicology). Endpoints included toxicokinetics; echocardiography, telemetric hemodynamics and electrocardiography, and tissue injury biomarkers (monkey); and light and ultrastructural pathology of heart, kidney, and skeletal muscle (mouse/monkey). Dose-related and time-dependent findings included: severe toxicity in mice at 150 mg/kg/d and monkeys at 30 mg/kg/d; decreased left ventricular (LV) ejection fraction, fractional shortening, stroke volume, and dP/dt; LV dilatation, increased QTc interval, and T-wave flattening/inversion (monkeys at ≥ 15 mg/kg/d); cardiomyocyte degeneration (mice at 150 mg/kg/d and monkeys at ≥ 15 mg/kg/d) with myofilament lysis/myofbril disassembly; time-dependent proteinuria and increased urine ß-2 microglobulin, calbindin, clusterin; kidney pallor macroscopically; and tubular dilatation (monkeys); tubular regeneration (mice 150 mg/kg/d); and acute proximal tubule degeneration ultrastructurally (mice/monkeys); and skeletal muscle degeneration with increased urine myoglobin and serum sTnI. These studies identified changes not described previously in studies of BMS-986094 including premonitory cardiovascular functional changes as well as additional biomarkers for muscle and renal toxicities. Although the mechanism of potential toxicities observed in BMS-986094 studies was not established, there was no evidence for direct mitochondrial toxicity.


Assuntos
Guanosina Monofosfato/análogos & derivados , Coração/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Feminino , Guanosina Monofosfato/uso terapêutico , Guanosina Monofosfato/toxicidade , Coração/fisiologia , Hepatite C Crônica/tratamento farmacológico , Rim/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Toxicocinética
8.
Toxicol Sci ; 155(2): 379-388, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28025230

RESUMO

The objective of this work was to investigate the mechanisms of hepatobiliary toxicity caused by thienopyrimidone MCHR1 antagonists using BMS-773174 as a tool molecule. Co-administration of the pan CYP inhibitor 1-aminobenzotriazole with BMS-773174 prevented hepatobiliary damage, and direct delivery of the diol metabolite BMS-769750 caused hepatobiliary toxicity, identifying the diol and possibly its downstream hydroxyacid (BMS-800754) metabolite as the toxic species. Rat liver gene expression revealed treatment-related changes in hepatic transporters and induction of oval cell-specific genes including deleted malignant tumor 1 (Dmbt1). The metabolites did not alter hepatic transporter activities, suggesting that transporter-mediated cholestasis was not involved. Because injury to biliary epithelium can result in adaptive hyperplasia, rat biliary epithelial cells (BECs) were isolated and exposed to the oxidative metabolites. BMS-769750 was cytotoxic to BECs, but not rat hepatocytes, suggesting a role of the diol in biliary epithelial injury. BMS-800754 was cytotoxic to rat hepatocytes therefore its contribution to hepatocyte injury in rats is a possibility. Induction of Dmbt1 in rat BECs was investigated because of its role in hepatic progenitor cell differentiation/proliferation during injury. Dmbt1 mRNA was induced by BMS-769750, but not BMS-800754 in BECs; this induction and cellular injury was confirmed with diol metabolites formed by other compounds with the same hepatobiliary liability. In conclusion, hepatobiliary injury by thienopyrimidinone MCHR1 antagonists was driven through a CYP-mediated bioactivation pathway. Induction of Dmbt1 mRNA coupled with cellular injury suggests that injury of biliary epithelium may be the first step toward an adaptive proliferative response causing BDH by these compounds.


Assuntos
Sistema Biliar/efeitos dos fármacos , Compostos Heterocíclicos com 2 Anéis/farmacologia , Fígado/efeitos dos fármacos , Receptores de Somatostatina/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Compostos Heterocíclicos com 2 Anéis/química , Fígado/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
9.
J Med Chem ; 59(19): 8848-8858, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27564419

RESUMO

The potent MCHR1 in vitro and in vivo antagonist activity of a series of cyclic tertiary alcohols derived from compound 2b is described. Subsequent pharmacokinetic and pharmacodynamic studies identified BMS-814580 (compound 10) as a highly efficacious antiobesity agent with a relatively clean in vitro and in vivo safety profile.


Assuntos
Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Pirimidinas/química , Pirimidinas/uso terapêutico , Receptores de Somatostatina/antagonistas & inibidores , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Cães , Halogenação , Humanos , Macaca fascicularis , Masculino , Camundongos , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Receptores de Somatostatina/metabolismo , Relação Estrutura-Atividade
10.
Toxicol Pathol ; 43(6): 825-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26085543

RESUMO

Glucokinase (GK) catalyzes the initial step in glycolysis and is a key regulator of glucose homeostasis. Therefore, glucokinase activators (GKa) have potential benefit in treating type 2 diabetes. Administration of a Bristol-Myers Squibb GKa (BMS-820132) to healthy euglycemic Sprague-Dawley (SD) rats and beagle dogs in 1 mo toxicology studies resulted in marked and extended hypoglycemia with associated clinical signs of toxicity and degenerative histopathological changes in the stomach, sciatic nerve, myocardium, and skeletal muscles at exposures comparable to those expected at therapeutic clinical exposures. To investigate whether these adverse effects were secondary to exaggerated pharmacology (prolonged hypoglycemia), BMS-820132 was administered daily to male Zucker diabetic fatty (ZDF) rats for 1 mo. ZDF rats are markedly hyperglycemic and insulin resistant. BMS-820132 did not induce hypoglycemia, clinical signs of hypoglycemia, or any of the histopathologic adverse effects observed in the 1 mo toxicology studies at exposures that exceeded those observed in SD rats and dogs. This indicates that the toxicity observed in euglycemic animals was secondary to the exaggerated pharmacology of potent GK activation. This study indicates that ZDF rats, with conventional toxicity studies, are a useful disease model for testing antidiabetic agents and determining toxicities that are independent of prolonged hypoglycemia.


Assuntos
Diabetes Mellitus/genética , Ativadores de Enzimas/toxicidade , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/toxicidade , Ratos Zucker/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus/patologia , Cães , Ingestão de Alimentos/efeitos dos fármacos , Ativadores de Enzimas/farmacocinética , Glucoquinase/genética , Hipoglicemia/patologia , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Insulina/sangue , Resistência à Insulina/genética , Masculino , Ratos , Especificidade da Espécie , Toxicocinética
11.
J Med Chem ; 57(18): 7509-22, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25165888

RESUMO

Identification of MCHR1 antagonists with a preclinical safety profile to support clinical evaluation as antiobesity agents has been a challenge. Our finding that a basic moiety is not required for MCHR1 antagonists to achieve high affinity allowed us to explore structures less prone to off-target activities such as hERG inhibition. We report the SAR evolution of hydroxylated thienopyrimidinone ethers culminating in the identification of 27 (BMS-819881), which entered obesity clinical trials as the phosphate ester prodrug 35 (BMS-830216).


Assuntos
Fármacos Antiobesidade/farmacologia , Descoberta de Drogas , Obesidade/tratamento farmacológico , Receptores de Somatostatina/antagonistas & inibidores , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/uso terapêutico , Cães , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Masculino , Ratos
12.
Diabetes Ther ; 5(1): 73-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24474422

RESUMO

INTRODUCTION: Dapagliflozin is a selective inhibitor of the sodium-glucose co-transporter 2 (SGLT2) that increases urinary glucose excretion to reduce hyperglycemia in the treatment of type 2 diabetes mellitus. A robust carcinogenicity risk assessment was undertaken to assess the chronic safety of dapagliflozin and SGLT2 inhibition. METHODS: Genotoxicity potential of dapagliflozin and its metabolites was assessed in silico, in vitro, and in vivo. Dapagliflozin was administered daily by oral gavage to mice, rats, and dogs to evaluate carcinogenicity risks, including the potential for tumor promotion. SGLT2(-/-) mice were observed to evaluate the effects of chronic glucosuria. The effects of dapagliflozin and increased glucose levels on a panel of human bladder transitional cell carcinoma (TCC) cell lines were also evaluated in vitro and in an in vivo xenograft model. RESULTS: Dapagliflozin and its metabolites were not genotoxic. In CD-1 mice and Sprague-Dawley rats treated for up to 2 years at ≥100× human clinical exposures, dapagliflozin showed no differences versus controls for tumor incidence, time to onset for background tumors, or urinary bladder proliferative/preneoplastic lesions. No tumors or preneoplastic lesions were observed in dogs over 1 year at >3,000× the clinical exposure of dapagliflozin or in SGLT2(-/-) mice observed over 15 months. Transcription profiling in Zucker diabetic fatty rats showed that 5-week dapagliflozin treatment did not induce tumor promoter-associated or cell proliferation genes. Increasing concentrations of glucose, dapagliflozin, or its primary metabolite, dapagliflozin 3-O-glucuronide, did not affect in vitro TCC proliferation rates and dapagliflozin did not enhance tumor growth in nude mice heterotopically implanted with human bladder TCC cell lines. CONCLUSION: A multitude of assessments of tumorigenicity risk consistently showed no effects, suggesting that selective SGLT2 inhibition and, specifically, dapagliflozin are predicted to not be associated with increased cancer risk.

13.
Diabetes ; 63(4): 1303-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24222349

RESUMO

Glucagon-like peptide 1-based therapies, collectively described as incretins, produce glycemic benefits in the treatment of type 2 diabetes. Recent publications raised concern for a potential increased risk of pancreatitis and pancreatic cancer with incretins based in part on findings from a small number of rodents. However, extensive toxicology assessments in a substantial number of animals dosed up to 2 years at high multiples of human exposure do not support these concerns. We hypothesized that the lesions being attributed to incretins are commonly observed background findings and endeavored to characterize the incidence of spontaneous pancreatic lesions in three rat strains (Sprague-Dawley [S-D] rats, Zucker diabetic fatty [ZDF] rats, and rats expressing human islet amyloid polypeptide [HIP]; n = 36/group) on a normal or high-fat diet over 4 months. Pancreatic findings in all groups included focal exocrine degeneration, atrophy, inflammation, ductular cell proliferation, and/or observations in large pancreatic ducts similar to those described in the literature, with an incidence of exocrine atrophy/inflammation seen in S-D (42-72%), HIP (39%), and ZDF (6%) rats. These data indicate that the pancreatic findings attributed to incretins are common background findings, observed without drug treatment and independent of diet or glycemic status, suggesting a need to exercise caution when interpreting the relevance of some recent reports regarding human safety.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Pâncreas/efeitos dos fármacos , Pancreatopatias/etiologia , Animais , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Incretinas/efeitos adversos , Pâncreas/patologia , Pancreatite/etiologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Aumento de Peso
14.
Int J Toxicol ; 32(5): 336-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24097127

RESUMO

Dapagliflozin, a first-in-class, selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), promotes urinary glucose excretion to reduce hyperglycemia for the treatment of type 2 diabetes. A series of nonclinical studies were undertaken to evaluate dapagliflozin in species where it was shown to have pharmacologic activity comparable with that in humans at doses that resulted in supratherapeutic exposures. In vitro screening (>300 targets; 10 µmol/L) indicated no significant off-target activities for dapagliflozin or its primary human metabolite. Once daily, orally administered dapagliflozin was evaluated in Sprague-Dawley rats (≤6 months) and in beagle dogs (≤1 year) at exposures >5000-fold those observed at the maximum recommended human clinical dose (MRHD; 10 mg). Anticipated, pharmacologically mediated effects of glucosuria, osmotic diuresis, and mild electrolyte loss were observed, but there were no adverse effects at clinically relevant exposures, including in the kidneys or urogenital tract. The SGLT2-/- mice, which show chronic glucosuria, and dapagliflozin-treated, wild-type mice exhibited similar safety profiles. In rats but not dogs, dapagliflozin at >2000-fold MRHD exposures resulted in tissue mineralization and trabecular bone accretion. Investigative studies suggested that the effect was not relevant to human safety, since it was partially related to off-target inhibition of SGLT1, which was observed only at high doses of dapagliflozin and resulted in intestinal glucose malabsorption and increased intestinal calcium absorption. The rigorous assessment of supra- and off-target dapagliflozin pharmacology in nonclinical species allowed for a thorough evaluation of potential toxicity, providing us with confidence in its safety in patients with diabetes.


Assuntos
Glucosídeos/toxicidade , Hipoglicemiantes/toxicidade , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Compostos Benzidrílicos , Células CHO , Cricetulus , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Glucosídeos/administração & dosagem , Glucosídeos/farmacocinética , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Transportador 2 de Glucose-Sódio/genética
15.
Toxicol Pathol ; 41(3): 508-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22968286

RESUMO

Animal models of human disease are commonly utilized to gain insight into the potential efficacy and mode of action of novel pharmaceuticals. However, conventional (healthy) rodent and nonrodent models are generally utilized in nonclinical safety testing. Animal models of human disease may be helpful in understanding safety risks of compounds in nonclinical or clinical development, with their greatest value being in targeted or hypothesis-driven studies to help understand the mechanism of a particular toxicity. Limitations of animal models of disease in nonclinical safety testing include a lack of historical control, heterogeneity in disease expression, a limited life span, and confounding effects of the disease. In most instances, animal models of human disease should not be utilized to supplant testing in conventional animal models. While of potential benefit, testing in an animal model of human disease should only be taken after adequate consideration of relevance along with benefits and limitations of the proposed model.


Assuntos
Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Toxicidade/métodos , Animais , Humanos , Camundongos , Ratos , Medição de Risco
16.
Toxicol Sci ; 129(2): 268-79, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821849

RESUMO

Ibipinabant (IBI), a potent cannabinoid-1 receptor (CB1R) antagonist, previously in development for the treatment of obesity, causes skeletal and cardiac myopathy in beagle dogs. This toxicity was characterized by increases in muscle-derived enzyme activity in serum and microscopic striated muscle degeneration and accumulation of lipid droplets in myofibers. Additional changes in serum chemistry included decreases in glucose and increases in non-esterified fatty acids and cholesterol, and metabolic acidosis, consistent with disturbances in lipid and carbohydrate metabolism. No evidence of CB1R expression was detected in dog striated muscle as assessed by polymerase chain reaction, immunohistochemistry, Western blot analysis, and competitive radioligand binding. Investigative studies utilized metabonomic technology and demonstrated changes in several intermediates and metabolites of fatty acid metabolism including plasma acylcarnitines and urinary ethylmalonate, methylsuccinate, adipate, suberate, hexanoylglycine, sarcosine, dimethylglycine, isovalerylglycine, and 2-hydroxyglutarate. These results indicated that the toxic effect of IBI on striated muscle in beagle dogs is consistent with an inhibition of the mitochondrial flavin-containing enzymes including dimethyl glycine, sarcosine, isovaleryl-CoA, 2-hydroxyglutarate, and multiple acyl-CoA (short, medium, long, and very long chain) dehydrogenases. All of these enzymes converge at the level of electron transfer flavoprotein (ETF) and ETF oxidoreductase. Urinary ethylmalonate was shown to be a biomarker of IBI-induced striated muscle toxicity in dogs and could provide the ability to monitor potential IBI-induced toxic myopathy in humans. We propose that IBI-induced toxic myopathy in beagle dogs is not caused by direct antagonism of CB1R and could represent a model of ethylmalonic-adipic aciduria in humans.


Assuntos
Adipatos/urina , Malonatos/urina , Músculo Esquelético/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Sequência de Bases , Western Blotting , Carnitina/sangue , Primers do DNA , Cães , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Metabolômica , Reação em Cadeia da Polimerase , Ensaio Radioligante , Receptor CB1 de Canabinoide/genética
17.
Anal Biochem ; 410(1): 84-91, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21094120

RESUMO

Nuclear magnetic resonance (NMR)-based metabolomic profiling identified urinary 1- and 3-methylhistidine (1- and 3-MH) as potential biomarkers of skeletal muscle toxicity in Sprague-Dawley rats following 7 and 14 daily doses of 0.5 or 1mg/kg cerivastatin. These metabolites were highly correlated to sex-, dose- and time-dependent development of cerivastatin-induced myotoxicity. Subsequently, the distribution and concentration of 1- and 3-MH were quantified in 18 tissues by gas chromatography-mass spectrometry. The methylhistidine isomers were most abundant in skeletal muscle with no fiber or sex differences observed; however, 3-MH was also present in cardiac and smooth muscle. In a second study, rats receiving 14 daily doses of 1mg/kg cerivastatin (a myotoxic dose) had 6- and 2-fold elevations in 1- and 3-MH in urine and had 11- and 3-fold increases in 1- and 3-MH in serum, respectively. Selectivity of these potential biomarkers was tested by dosing rats with the cardiotoxicant isoproterenol (0.5mg/kg), and a 2-fold decrease in urinary 1- and 3-MH was observed and attributed to the anabolic effect on skeletal muscle. These findings indicate that 1- and 3-MH may be useful urine and serum biomarkers of drug-induced skeletal muscle toxicity and hypertrophy in the rat, and further investigation into their use and limitations is warranted.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Metilistidinas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Biomarcadores/metabolismo , Biomarcadores/urina , Creatina/metabolismo , Creatina/urina , Relação Dose-Resposta a Droga , Feminino , Masculino , Metilistidinas/farmacocinética , Metilistidinas/urina , Doenças Musculares/induzido quimicamente , Doenças Musculares/metabolismo , Doenças Musculares/urina , Piridinas/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
18.
Toxicol Sci ; 111(2): 402-12, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19628585

RESUMO

The purpose of this investigation was to determine the utility of fast-twitch skeletal muscle troponin I (fsTnI) and urinary myoglobin (uMB) as biomarkers of skeletal muscle injury in 8-week-old Sprague-Dawley rats. fsTnI and uMB were quantified by enzyme-linked immunosorbent assay and compared with standard clinical assays including creatine kinase, aldolase, aspartate aminotransferase, and histopathological assessments. Detectable levels of uMB were normalized to urinary creatinine to control for differences in renal function. Seven compounds, including those with toxic effects on skeletal muscle, cardiac muscle, or liver, were evaluated. fsTnI was typically nondetectable (< 5.9 ng/ml serum) in vehicle-treated female and male rats but increased in a dose-dependent manner to at least 300 ng/ml in cerivastatin-induced severe fast-twitch specific myotoxicity. Minimal myopathy induced by investigational compounds BMS-600149 and BMS-687453 increased serum fsTnI to about 30-50 ng/ml, suggesting a reasonable dynamic range for detecting mild to severe skeletal muscle toxicity. In direct contrast, fsTnI was only marginally increased relative to population control values in rats treated with triamcinolone acetonide, which produces muscle atrophy or the cardiotoxins isoproterenol and CoCl2. uMB was typically nondetectable (< 1.6 ng/ml urine) in vehicle-treated female and male rats but increased to approximately 140, 300, and 30 ng/mg creatinine in rats treated with cerivastatin, BMS-687453, and triamcinolone acetonide, respectively. Cardiotoxicity also increased uMB in rats treated with isoproterenol and CoCl2 with urine concentrations ranging from 20 to 30 ng/mg creatinine. Severe hepatotoxicity (coumarin) did not significantly affect serum fsTnI or uMB levels. Collectively, these data suggest that fsTnI is specific for skeletal muscle toxicity, whereas uMB is nonspecific, increasing with skeletal muscle and cardiac toxicity. Accordingly, the complement of fsTnI and uMB, in conjunction with standard clinical assays may comprise a useful diagnostic panel for assessing drug-induced myopathy in rats.


Assuntos
Biomarcadores/metabolismo , Músculo Esquelético/efeitos dos fármacos , Mioglobina/metabolismo , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Masculino , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioglobina/química , Ratos , Ratos Sprague-Dawley , Troponina I/química
19.
J Med Chem ; 51(9): 2722-33, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18412317

RESUMO

3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte. Thus, an inhibitor with increased selectivity for hepatocytes could potentially result in an improved therapeutic window. Implementation of a strategy that focused on in vitro potency, compound polarity, cell selectivity, and oral absorption, followed by extensive efficacy and safety modeling in guinea pig and rat, resulted in the identification of compound 1b (BMS-644950). Using this discovery pathway, we compared 1b to other marketed statins to demonstrate its outstanding efficacy and safety profile. With the potential to generate an excellent therapeutic window, 1b was advanced into clinical development.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/síntese química , Pirimidinas/síntese química , Triazóis/síntese química , Administração Oral , Animais , Disponibilidade Biológica , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Colesterol/biossíntese , Colesterol/sangue , Cristalografia por Raios X , Cães , Feminino , Cobaias , Haplorrinos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/metabolismo , Modelos Moleculares , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/toxicidade
20.
J Med Chem ; 51(5): 1145-9, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18260618

RESUMO

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/síntese química , Hipoglicemiantes/síntese química , Rim/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Administração Oral , Animais , Compostos Benzidrílicos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/química , Glucosídeos/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ratos , Transportador 2 de Glucose-Sódio , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...