Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5216-5232, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38527911

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Membrana Celular/metabolismo , Ácidos Carboxílicos/uso terapêutico , Benzodioxóis/farmacologia , Aminopiridinas/uso terapêutico
2.
Eur J Pharmacol ; 957: 175989, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572939

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by intrahepatic triglyceride accumulation and can progress to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Hepatic de novo lipogenesis (DNL), activated by glucose and insulin, is a central pathway contributing to early-stage development of MASLD. The emerging global prevalence of MASLD highlights the urgent need for pharmaceutical intervention to combat this health threat. However, the identification of novel drugs that could inhibit hepatic DNL is hampered by a lack of reliable, insulin-sensitive, human, in vitro, hepatic models. Here, we report human skin stem cell-derived hepatic cells (hSKP-HPC) as a unique in vitro model to study insulin-driven DNL (iDNL), evidenced by both gene expression and lipid accumulation readouts. Insulin-sensitive hSKP-HPC showed increased sterol regulatory element-binding protein 1c (SREBP-1c) expression, a key transcription factor for DNL. Furthermore, this physiologically relevant in vitro human steatosis model allowed both inhibition and activation of the iDNL pathway using reference inhibitors and activators, respectively. Optimisation of the lipid accumulation assay to a high-throughput, 384-well format enabled the screening of a library of annotated compounds, delivering new insights on key players in the iDNL pathway and MASLD pathophysiology. Together, these results establish the value of the hSKP-HPC model in preclinical development of antisteatotic drugs to combat MASLD.


Assuntos
Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Insulina/metabolismo , Lipogênese/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Células-Tronco/metabolismo
3.
J Med Chem ; 64(19): 14557-14586, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34581584

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease. Current treatments only slow down disease progression, making new therapeutic strategies compelling. Increasing evidence suggests that S1P2 antagonists could be effective agents against fibrotic diseases. Our compound collection was mined for molecules possessing substructure features associated with S1P2 activity. The weakly potent indole hit 6 evolved into a potent phthalazone series, bearing a carboxylic acid, with the aid of a homology model. Suboptimal pharmacokinetics of a benzimidazole subseries were improved by modifications targeting potential interactions with transporters, based on concepts deriving from the extended clearance classification system (ECCS). Scaffold hopping, as a part of a chemical enablement strategy, permitted the rapid exploration of the position adjacent to the carboxylic acid. Compound 38, with good pharmacokinetics and in vitro potency, was efficacious at 10 mg/kg BID in three different in vivo mouse models of fibrotic diseases in a therapeutic setting.


Assuntos
Ácidos Carboxílicos/farmacologia , Descoberta de Drogas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Ácidos Carboxílicos/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos
4.
J Med Chem ; 64(9): 6037-6058, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33939425

RESUMO

Mounting evidence from the literature suggests that blocking S1P2 receptor (S1PR2) signaling could be effective for the treatment of idiopathic pulmonary fibrosis (IPF). However, only a few antagonists have been so far disclosed. A chemical enablement strategy led to the discovery of a pyridine series with good antagonist activity. A pyridazine series with improved lipophilic efficiency and with no CYP inhibition liability was identified by scaffold hopping. Further optimization led to the discovery of 40 (GLPG2938), a compound with exquisite potency on a phenotypic IL8 release assay, good pharmacokinetics, and good activity in a bleomycin-induced model of pulmonary fibrosis.


Assuntos
Desenho de Fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridazinas/química , Piridazinas/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Piridazinas/farmacocinética , Piridazinas/uso terapêutico , Relação Estrutura-Atividade , Distribuição Tecidual
5.
Front Pharmacol ; 10: 514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143125

RESUMO

The deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation. Here, we describe the identification of a novel F508del corrector using functional assays. We provide experimental evidence that the clinical candidate GLPG/ABBV-2737 represents a novel class of corrector exerting activity both on its own and in combination with VX809 or GLPG/ABBV-2222.

6.
Front Pharmacol ; 9: 1221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416447

RESUMO

There is still a high unmet need for the treatment of most patients with cystic fibrosis (CF). The identification and development of new Cystic Fibrosis Transmembrane conductance Regulator (CFTR) modulators is necessary to achieve higher clinical benefit in patients. In this report we describe the characterization of novel potentiators. From a small screening campaign on F508del CFTR, hits were developed leading to the identification of pre-clinical candidates GLPG1837 and GLPG2451, each derived from a distinct chemical series. Both drug candidates enhance WT CFTR activity as well as low temperature or corrector rescued F508del CFTR, and are able to improve channel activity on a series of Class III, IV CFTR mutants. The observed activities in YFP halide assays translated well to primary cells derived from CF lungs when measured using Trans-epithelial clamp circuit (TECC). Both potentiators improve F508del CFTR channel opening in a similar manner, increasing the open time and reducing the closed time of the channel. When evaluating the potentiators in a chronic setting on corrected F508del CFTR, no reduction of channel activity in presence of potentiator was observed. The current work identifies and characterizes novel CFTR potentiators GLPG1837 and GLPG2451, which may offer new therapeutic options for CF patients.

8.
J Med Chem ; 61(4): 1425-1435, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29148763

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Orkambi, it has been shown that CFTR function can be partially restored by administering one or more small molecules. These molecules aim at either enhancing the amount of CFTR on the cell surface (correctors) or at improving the gating function of the CFTR channel (potentiators). Here we describe the discovery of a novel potentiator GLPG1837, which shows enhanced efficacy on CFTR mutants harboring class III mutations compared to Ivacaftor, the first marketed potentiator. The optimization of potency, efficacy, and pharmacokinetic profile will be described.


Assuntos
Agonistas dos Canais de Cloreto/química , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Proteínas Mutantes/efeitos dos fármacos , Aminofenóis/farmacocinética , Animais , Agonistas dos Canais de Cloreto/farmacocinética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Pirazóis/química , Pirazóis/farmacocinética , Quinolonas/farmacocinética , Ratos , Relação Estrutura-Atividade
9.
J Med Chem ; 60(17): 7371-7392, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28731719

RESUMO

Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure-activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Piridinas/química , Piridinas/farmacologia , Animais , Humanos , Imidazóis/farmacocinética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/farmacocinética , Diester Fosfórico Hidrolases/química , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
Nat Biotechnol ; 20(11): 1154-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12355097

RESUMO

With the publication of the sequence of the human genome, we are challenged to identify the functions of an estimated 70,000 human genes and the much larger number of proteins encoded by these genes. Of particular interest is the identification of gene products that play a role in human disease pathways, as these proteins include potential new targets that may lead to improved therapeutic strategies. This requires the direct measurement of gene function on a genomic scale in cell-based, functional assays. We have constructed and validated an individually arrayed, replication-defective adenoviral library harboring human cDNAs, termed PhenoSelect library. The adenoviral vector guarantees efficient transduction of diverse cell types, including primary cells. The arrayed format allows screening of this library in a variety of cellular assays in search for gene(s) that, by overexpression, induce a particular disease-related phenotype. The great majority of phenotypic assays, including morphological assays, can be screened with arrayed libraries. In contrast, pooled-library approaches often rely on phenotype-based isolation or selection of single cells by employing a flow cytometer or screening for cell survival. An arrayed placental PhenoSelect library was screened in cellular assays aimed at identifying regulators of osteogenesis, metastasis, and angiogenesis. This resulted in the identification of known regulators, as well as novel sequences that encode proteins hitherto not known to play a role in these pathways. These results establish the value of the PhenoSelect platform, in combination with cellular screens, for gene function discovery.


Assuntos
Adenoviridae/genética , Regulação Viral da Expressão Gênica , Biblioteca Gênica , Genoma Humano , Animais , Linhagem Celular , Cães , Epitélio/fisiologia , Epitélio/virologia , Estudos de Viabilidade , Feminino , Células HeLa/fisiologia , Células HeLa/virologia , Humanos , Rim/fisiologia , Rim/virologia , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteoblastos/fisiologia , Osteoblastos/virologia , Placenta/fisiologia , Placenta/virologia , Gravidez , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...