Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 18(4): 1256-1276, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336994

RESUMO

Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross ß-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.

2.
Compr Rev Food Sci Food Saf ; 18(4): 1277-1291, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33337003

RESUMO

Both intrinsic and extrinsic factors impact amyloid formation of food proteins. We here review the impact of various conditions and food constituents on amyloid fibrillation of milk and legume proteins. Much less is known about casein and legume protein amyloid-like fibril formation than about that of whey proteins such as ß-lactoglobulin, α-lactalbumin, and bovine serum albumin. Proteins of both sources are often studied after heating under strong acidic (pH < 3) conditions. The latter induces changes in protein conformation and often peptide hydrolysis. At higher pH values, alcohols, chaotropic and/or reducing agents induce the conformational changes required to enhance fibrillation. Different types of food proteins can impact each other's fibrillation. Also, the presence of other food constituents can enhance or reduce it. No general conclusions on the mechanisms or impact of different food constituents on food proteins can be made. Optimal conditions for AF formation, that is, heating for several days at low pH, are rare in food processing. However, this does not exclude the possibility of AF formation in food products. For example, slow cooking of hydrolyzed proteins may enhance it. Future research should focus on the prevalence of AFs in complex food systems or model systems relevant for food processing.

3.
Compr Rev Food Sci Food Saf ; 18(1): 84-105, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33337021

RESUMO

To control and enhance protein functionality is a major challenge for food scientists. In this context, research on food protein fibril formation, especially amyloid fibril formation, holds much promise. We here first provide a concise overview of conditions, which affect amyloid formation in food proteins. Particular attention is directed towards amyloid core regions because these sequences promote ordered aggregation. Better understanding of this process will be key to tailor the fibril formation process. Especially seeding, that is, adding preformed protein fibrils to protein solutions to accelerate fibril formation holds promise to tailor aggregation and fibril techno-functionality. Some studies have already indicated that food protein fibrillation indeed improves their techno-functionality. However, much more research is necessary to establish whether protein fibrils are useful in complex food systems and whether and to what extent they resist food processing unit operations. In this review the effect of amyloid formation on gelation, interfacial properties, foaming, and emulsification is discussed. Despite their prevalent role as functional structures, amyloids also receive a lot of attention due to their association with protein deposition diseases, prompting us to thoroughly investigate the potential health impact of amyloid-like aggregates in food. A literature review on the effect of the different stages of the human digestive process on amyloid toxicity leads us to conclude that food-derived amyloid fibrils (even those with potential pathogenic properties) very likely have minimal impact on human health. Nevertheless, prior to wide-spread application of the technology, it is highly advisable to further verify the lack of toxicity of food-derived amyloid fibrils.

4.
Food Chem ; 242: 68-74, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037737

RESUMO

Gluten proteins functionality during pastry production was examined by including redox agents in the ingredient bill. Addition of reducing and oxidizing agents respectively increased and decreased dough height during fermentation. The presence of large gas bubbles in the samples with oxidizing agents may have caused a 'stacking'-effect and a more effective dough lift. During baking, the level of extractable proteins decreased to comparable values for all samples, except when potassium iodate (KIO3) was used in the recipe. As a result of its use, a lower level of gliadin was incorporated into the gluten polymer and dough layers tended to 'slide' apart during baking, thereby causing collapse. Most likely, KIO3 caused glutenin oxidation within each individual dough layer to such extent during the dough stage that insufficient thiol groups were available for forming dough layer interconnections during baking, after margarine melting. Furthermore, addition of redox agents impacted the product's crumb structure.


Assuntos
Pão/análise , Dissulfetos , Gliadina/metabolismo , Glutens/química , Triticum/química , Reatores Biológicos , Fermentação , Glutens/metabolismo , Margarina , Oxirredução
5.
ACS Omega ; 2(8): 4612-4620, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457750

RESUMO

Thermal processing conditions, pH, and salt content affect the formation of egg white ovalbumin amyloid, which was investigated using high-precision measurements of ultrasonic velocity and attenuation. These were related to fluorescence and particle size measurements. Fluorescence changes indicated the formation of amyloid-like aggregates that was enhanced by increasing time-temperature treatments. The ultrasonic velocity of ovalbumin after heating at neutral pH (60 min at 70 or 80 °C) was lower than that of unheated ovalbumin, whereas the attenuation was higher. The decrease in the velocity represents increased compressibility associated with a change in the compactness of the protein, whereas changes in attenuation are due to protein conformational changes. Heating ramp studies revealed transitions at approximately 58 and 73 °C. During heating at a constant temperature, the ultrasonic velocity decreased slowly with increasing heating time, indicating an increase in ovalbumin compressibility. It is suggested that the obtained amyloid-like ovalbumin aggregates contain a compact core surrounded by loosely packed protein segments.

6.
Compr Rev Food Sci Food Saf ; 16(1): 39-58, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33371541

RESUMO

There is currently much interest in the use of pseudocereals for developing nutritious food products. Amaranth, buckwheat, and quinoa are the 3 major pseudocereals in terms of world production. They contain high levels of starch, proteins, dietary fiber, minerals, vitamins, and other bioactives. Their proteins have well-balanced amino acid compositions, are more sustainable than those from animal sources, and can be consumed by patients suffering from celiac disease. While pseudocereal proteins mainly consist of albumins and globulins, the predominant cereal proteins are prolamins and glutelins. We here discuss the structural properties, denaturation and aggregation behaviors, and solubility, as well as the foaming, emulsifying, and gelling properties of amaranth, buckwheat, and quinoa proteins. In addition, the technological impact of incorporating amaranth, buckwheat, and quinoa in bread, pasta, noodles, and cookies and strategies to affect the functionality of pseudocereal flour proteins are discussed. Literature concerning pseudocereal proteins is often inconsistent and contradictory, particularly in the methods used to obtain globulins and glutelins. Also, most studies on protein denaturation and techno-functional properties have focused on isolates obtained by alkaline extraction and subsequent isoelectric precipitation at acidic pH, even if the outcome of such studies is not necessarily relevant for understanding the role of the native proteins in food processing. Finally, even though establishing in-depth structure-function relationships seems challenging, it would undoubtedly be of major help in the design of tailor-made pseudocereal foods.

7.
J Agric Food Chem ; 61(44): 10516-24, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24131364

RESUMO

High-temperature compression molding of wheat gluten at low water levels yields a rigid plastic-like material. We performed a systematic study to determine the effect of additives with multiple thiol (SH) groups on gluten network formation during processing and investigate the impact of the resulting gluten network on the mechanical properties of the glassy end product. To this end, a fraction of the hydroxyl groups of different polyols was converted into SH functionalities by esterifying with 3-mercaptopropionic acid (MPA). The monofunctional additive MPA was evaluated as well. During low-temperature mixing SH-containing additives decreased the gluten molecular weight, whereas protein cross-linking occurred during high-temperature compression molding. The extent of both processes depended on the molecular architecture of the additives and their concentration. After molding, the material strength and failure strain increased without affecting the modulus, provided the additive concentration was low. The strength decreased again at too high concentrations for polyols with low SH functionalization. Attributing these effects solely to the interplay of plasticization and the SH-facilitated introduction of cross-links is inadequate, since an improvement in both strength and failure strain was also observed in the presence of high levels of MPA. It is hypothesized that, regardless of the molecular structure of the additive, the presence of SH-containing groups induces conformational changes which contribute to the mechanical properties of glassy gluten materials.


Assuntos
Glutens/química , Compostos de Sulfidrila/química , Triticum/química , Temperatura Alta , Estrutura Molecular , Peso Molecular , Pressão , Conformação Proteica
8.
J Agric Food Chem ; 61(39): 9393-400, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24016229

RESUMO

Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. ß-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.


Assuntos
Ácidos não Carboxílicos/química , Plásticos Biodegradáveis/química , Glutens/química , Hidróxidos/química , Indicadores e Reagentes/química , Sementes/química , Triticum/química , Fenômenos Químicos , Módulo de Elasticidade/efeitos dos fármacos , Temperatura Alta , Ácido Clorídrico/química , Fenômenos Mecânicos , Concentração Osmolar , Compostos de Potássio/química , Conformação Proteica , Hidróxido de Sódio/química , Solubilidade , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA