Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 398: 123002, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32506049

RESUMO

This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.


Assuntos
Sulfeto de Hidrogênio , Bactérias/genética , Reatores Biológicos , Ectothiorhodospiraceae , Gammaproteobacteria , Gases , Oxirredução , Compostos de Sulfidrila , Enxofre
2.
J Hazard Mater ; 383: 121104, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31586887

RESUMO

We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ±â€¯265 ppmv at 25.4 °C to 69 ±â€¯25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ±â€¯126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.


Assuntos
Álcalis/química , Gases/química , Halogênios/química , Sulfeto de Hidrogênio/química , Anaerobiose , Bactérias/metabolismo , Enxofre/isolamento & purificação
3.
J Hazard Mater ; 386: 121916, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884361

RESUMO

Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.


Assuntos
Biocombustíveis/análise , Reatores Biológicos/microbiologia , Dissulfetos/química , Sulfeto de Hidrogênio/isolamento & purificação , Microbiota , Sulfatos/análise , Compostos de Sulfidrila/isolamento & purificação , Aerobiose , Anaerobiose , Dissulfetos/farmacologia , Cinética , Microbiota/efeitos dos fármacos , Modelos Teóricos , Oxirredução , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
4.
Water Res X ; 4: 100035, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334497

RESUMO

Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.

5.
Environ Sci Technol ; 50(23): 12808-12815, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934286

RESUMO

After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.


Assuntos
RNA Ribossômico 16S , Sulfetos , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/química , Compostos de Sulfidrila/química
6.
Water Res ; 101: 448-456, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27295619

RESUMO

A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S, thiols are commonly present in sour gas streams. We investigated the inhibition mode and the corresponding inhibition constants of six thiols and the corresponding diorgano polysulfanes on the biological oxidation of H2S. A linear relationship was found between the calculated IC50 values and the lipophilicity of the inhibitors. Moreover, a mathematical model was proposed to estimate the biomass activity in the absence and presence of sulfurous inhibitors. The biomass used in the respiration tests originated from a full-scale biodesulfurization reactor. A microbial community analysis of this biomass revealed that two groups of microorganism are abundant, viz. Ectothiorhodospiraceae and Piscirickettsiaceae.


Assuntos
Compostos de Sulfidrila , Sulfetos , Sulfeto de Hidrogênio , Oxirredução , Enxofre
7.
Environ Technol ; 37(13): 1693-703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26652658

RESUMO

Inorganic and organic sulphur compounds such as hydrogen sulphide (H2S) and thiols (RSH) are unwanted components in sour gas streams (e.g. biogas and refinery gases) because of their toxicity, corrosivity and bad smell. Biological treatment processes are often used to remove H2S at small and medium scales (<50 tons per day of H2S). Preliminarily research by our group focused on achieving maximum sulphur production from biological H2S oxidation in the presence of methanethiol. In this paper the underlying principles have been further studied by assessing the effect of methanethiol on the biological conversion of H2S under a wide range of redox conditions covering not only sulphur but also sulphate-producing conditions. Furthermore, our experiments were performed in an integrated system consisting of a gas absorber and a bioreactor in order to assess the effect of methanethiol on the overall gas treatment efficiency. This study shows that methanethiol inhibits the biological oxidation of H2S to sulphate by way of direct suppression of the cytochrome c oxidase activity in biomass, whereas the oxidation of H2S to sulphur was hardly affected. We estimated the kinetic parameters of biological H2S oxidation that can be used to develop a mathematical model to quantitatively describe the biodesulphurization process. Finally, it was found that methanethiol acts as a competitive inhibitor; therefore, its negative effect can be minimized by increasing the enzyme (biomass) concentration and the substrate (sulphide) concentration, which in practice means operating the biodesulphurization systems under low redox conditions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Eliminação de Resíduos/métodos , Compostos de Sulfidrila/química , Sulfetos/análise , Poluentes Atmosféricos/química , Cinética , Modelos Químicos , Odorantes/análise , Oxirredução , Sulfetos/química
8.
Environ Sci Technol ; 49(15): 9212-21, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26154624

RESUMO

Bioremoval of H2S from gas streams became popular in recent years because of high process efficiency and low operational costs. To expand the scope of these processes to gas streams containing volatile organic sulfur compounds, like thiols, it is necessary to provide new insights into their impact on overall biodesulfurization process. Published data on the effect of thiols on biodesulfurization processes are scarce. In this study, we investigated the effect of methanethiol on the selectivity for sulfur production in a bioreactor integrated with a gas absorber. This is the first time that the inhibition of biological sulfur formation by methanethiol is investigated. In our reactor system, inhibition of sulfur production started to occur at a methanethiol loading rate of 0.3 mmol L(-1) d(-1). The experimental results were also described by a mathematical model that includes recent findings on the mode of biomass inhibition by methanethiol. We also found that the negative effect of methanethiol can be mitigated by lowering the salinity of the bioreactor medium. Furthermore, we developed a novel approach to measure the biological activity by sulfide measurements using UV-spectrophotometry. On the basis of this measurement method, it is possible to accurately estimate the unknown kinetic parameters in the mathematical model.


Assuntos
Álcalis/farmacologia , Bactérias/metabolismo , Halogênios/farmacologia , Compostos de Sulfidrila/farmacologia , Enxofre/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/isolamento & purificação , Cinética , Modelos Teóricos , Oxirredução/efeitos dos fármacos , Oxigênio/análise , Reprodutibilidade dos Testes , Salinidade , Solubilidade , Compostos de Sulfidrila/isolamento & purificação , Sulfetos/análise
9.
Water Res ; 47(2): 483-92, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23177655

RESUMO

In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S° formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Citocromos c/metabolismo , Sulfeto de Hidrogênio/metabolismo , Modelos Biológicos , Natronobacterium/metabolismo , Gerenciamento de Resíduos/métodos , Proteínas Arqueais/metabolismo , Reatores Biológicos/microbiologia , Reatores Biológicos/parasitologia , Sulfeto de Hidrogênio/análise , Cinética , Natronobacterium/enzimologia , Natronobacterium/crescimento & desenvolvimento , Ciclo do Nitrogênio , Oxirredução , Quinonas/metabolismo
10.
Environ Sci Technol ; 46(14): 7581-6, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22697609

RESUMO

Physicochemical processes, such as the Lo-cat and Amine-Claus process, are commonly used to remove hydrogen sulfide from hydrocarbon gas streams such as landfill gas, natural gas, and synthesis gas. Biodesulfurization offers environmental advantages, but still requires optimization and more insight in the reaction pathways and kinetics. We carried out experiments with gas lift bioreactors inoculated with haloalkaliphilic sulfide-oxidizing bacteria. At oxygen-limiting levels, that is, below an O(2)/H(2)S mole ratio of 1, sulfide was oxidized to elemental sulfur and sulfate. We propose that the bacteria reduce NAD(+) without direct transfer of electrons to oxygen and that this is most likely the main route for oxidizing sulfide to elemental sulfur which is subsequently oxidized to sulfate in oxygen-limited bioreactors. We call this pathway the limited oxygen route (LOR). Biomass growth under these conditions is significantly lower than at higher oxygen levels. These findings emphasize the importance of accurate process control. This work also identifies a need for studies exploring similar pathways in other sulfide oxidizers such as Thiobacillus bacteria.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/métodos , Redes e Vias Metabólicas , Oxigênio/química , Sulfetos/metabolismo , Álcalis/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Halogênios/metabolismo , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Consumo de Oxigênio , Especificidade da Espécie , Thiobacillus/metabolismo
11.
Water Res ; 46(3): 723-30, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22182680

RESUMO

This research demonstrates the feasibility and advantages of a 2-step process for the biological treatment of sulfidic spent caustics under halo-alkaline conditions (i.e. pH 9.5; Na(+) = 0.8 M). Experiments with synthetically prepared solutions were performed in a continuously fed system consisting of two gas-lift reactors in series operated at aerobic conditions at 35 °C. The detoxification of sulfide to thiosulfate in the first step allowed the successful biological treatment of total-S loading rates up to 33 mmol L(-1) day(-1). In the second, biological step, the remaining sulfide and thiosulfate was completely converted to sulfate by haloalkaliphilic sulfide oxidizing bacteria. Mathematical modeling of the 2-step process shows that under the prevailing conditions an optimal reactor configuration consists of 40% 'abiotic' and 60% 'biological' volume, whilst the total reactor volume is 22% smaller than for the 1-step process.


Assuntos
Cáusticos/isolamento & purificação , Sulfetos/isolamento & purificação , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Reatores Biológicos , Simulação por Computador , Oxirredução , Purificação da Água/instrumentação
12.
Bioresour Technol ; 102(15): 7257-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602041

RESUMO

The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 µM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste.


Assuntos
Álcalis/química , Cáusticos/isolamento & purificação , Halogênios/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos , Bactérias/genética , Bactérias/metabolismo , Benzeno/análise , Benzeno/isolamento & purificação , Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , Eletroforese em Gel de Gradiente Desnaturante , Biblioteca Gênica , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Soluções , Sulfatos/análise , Sulfetos/análise , Fatores de Tempo
13.
Appl Microbiol Biotechnol ; 83(3): 579-87, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19333598

RESUMO

To avoid problems related to the discharge of sulfidic spent caustics, a biotechnological process is developed for the treatment of gases containing both hydrogen sulfide and methanethiol. The process operates at natron-alkaline conditions (>1 mol L(-1) of sodium- and potassium carbonates and a pH of 8.5-10) to enable the treatment of gases with a high partial CO(2) pressure. In the process, methanethiol reacts with biologically produced sulfur particles to form a complex mixture predominantly consisting of inorganic polysulfides, dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS). The effect of these organic sulfur compounds on the biological oxidation of sulfide to elemental sulfur was studied with natron-alkaliphilic bacteria belonging to the genus Thioalkalivibrio. Biological oxidation rates were reduced by 50% at 0.05 mM methanethiol, while for DMDS and DMTS, this was estimated to occur at 1.5 and 1.0 mM, respectively. The inhibiting effect of methanethiol on biological sulfide oxidation diminished due to its reaction with biologically produced sulfur particles. This reaction increases the feasibility of biotechnological treatment of gases containing both hydrogen sulfide and methanethiol at natron-alkaline conditions.


Assuntos
Álcalis/metabolismo , Regulação para Baixo , Ectothiorhodospiraceae/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Oxirredução
14.
Environ Sci Technol ; 43(2): 453-9, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19238979

RESUMO

The effects of methanethiol (MT) on biological sulfide oxidation were studied in a continuously operated bioreactor, in which chemolithoautotrophic bacteria belonging to the genus Thioalkalivibrio convert hydrogen sulfide (H2S) at natron-alkaline conditions. Previous bioreactor experiments have shown that always a fraction of the H2S is oxidized to sulfate and thiosulfate. This is unwanted, as it leads to caustic requirements for pH control and the formation of a bleed stream to discharge these compounds from the process. The current research shows that due to the addition of MT, sulfate formation is prevented. As a result, all supplied H2S is completely converted into elemental sulfur. Treatment of a continuous supply of 51.0 mM day(-1) H2S and 79 microM day(-1) MT was feasible for a prolonged period, with 99 mol% selectivity for sulfur formation. A part of the MT reacts with the freshly produced sulfur particles to form dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). Results indicate that MT, DMDS, and DMTS partly adsorb onto the biosulfur particles. At concentrations above 10 microM, these volatile organic sulfur compounds induce biomass decay.


Assuntos
Álcalis/química , Compostos de Sulfidrila/química , Sulfetos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Dissulfetos/metabolismo , Filtração , Sulfeto de Hidrogênio/química , Oxirredução
15.
Sci Total Environ ; 407(4): 1333-43, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19027933

RESUMO

In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.


Assuntos
Resíduos Industriais , Papel , Bactérias Redutoras de Enxofre/metabolismo , Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Anaerobiose , Reatores Biológicos , Sulfeto de Hidrogênio/isolamento & purificação , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Sulfatos/metabolismo , Eliminação de Resíduos Líquidos
16.
Biotechnol Bioeng ; 101(4): 691-701, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18814290

RESUMO

Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9.


Assuntos
Biotransformação , Metano/metabolismo , Methanosarcinaceae/metabolismo , Petróleo/metabolismo , Compostos de Sulfidrila/metabolismo , Microbiologia da Água , Ácido Acético/metabolismo , Anaerobiose , Reatores Biológicos , Dióxido de Carbono , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Metanol/metabolismo , Methanosarcinaceae/classificação , Methanosarcinaceae/isolamento & purificação , Dados de Sequência Molecular , Países Baixos , Filogenia , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Sulfetos/metabolismo , Temperatura , Washington
17.
Bioresour Technol ; 99(18): 8967-73, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18562196

RESUMO

The degradation of methanethiol (MT) at 30 degrees C under saline-alkaline (pH 8-10, 0.5M Na(+)) conditions was studied in a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor inoculated with estuarine sediment from the Wadden Sea (The Netherlands). At a sodium concentration of 0.5M and a pH between 8 and 9 complete MT degradation to sulfide, methane and carbon dioxide was possible at a maximum loading rate of 22mmolMTL(-1)day(-1) and a hydraulic retention time of 6h. The presence of yeast extract (100mg/L) in the medium was essential for complete MT degradation. 16S rRNA based DGGE and sequence analysis revealed that species related to the genera Methanolobus and Methanosarcina dominated the archaeal community in the reactor sludge. Their relative abundance fluctuated in time, possibly as a result of the changing operational conditions in the reactor. The most dominant MT-degrading archaeon was enriched from the reactor and obtained in pure culture. This strain WR1, which was most closely related to Methanolobus taylorii, degraded MT, dimethyl sulfide (DMS), methanol and trimethylamine. Its optimal growth conditions were 0.2M NaCl, 30 degrees C and pH 8.4. In batch and reactor experiments operated at pH 10, MT was not degraded.


Assuntos
Archaea/genética , Reatores Biológicos/normas , Compostos de Sulfidrila/metabolismo , Anaerobiose , Archaea/isolamento & purificação , Biodegradação Ambiental , Eletroforese , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Sulfetos/metabolismo
18.
Environ Sci Technol ; 42(7): 2637-42, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18505009

RESUMO

In a biotechnological process for hydrogen sulfide (H2S) removal from gas streams, operating at natronophilic conditions, formation of thiosulfate (S2O3(2-)) is unfavorable, as it leads to a reduced sulfur production. Thiosulfate formation was studied in gas-lift bioreactors, using natronophilic biomass at [Na+] + [K+] = 2 mol L(-1). The results show that at sulfur producing conditions, selectivity for S2O3(2-) formation mainly depends on the equilibrium between free sulfide (HS(-)) and polysulfide (Sx(2-)), which can be controlled via the pH. At pH 8.6, 21% of the total dissolved sulfide is present as Sx(2-) and selectivity for S2O3(2-) formation is 3.9-5.5%. At pH 10, 87% of the total dissolved sulfide is present as Sx(2-) and 20-22% of the supplied H2S is converted to S2O3(2-), independent of the H2S loading rate. Based on results of bioreactor experiments and biomass activity tests, a mechanistic model is proposed to describe the relation between S2O3(2-) formation and pH.


Assuntos
Biotecnologia , Sulfeto de Hidrogênio/isolamento & purificação , Concentração de Íons de Hidrogênio , Tiossulfatos/síntese química , Biomassa
19.
Biotechnol Bioeng ; 98(1): 91-100, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17286270

RESUMO

The feasibility of anaerobic methanethiol (MT) degradation at elevated sodium concentrations was investigated in a mesophilic (30 degrees C) lab-scale upflow anaerobic sludge bed (UASB) reactor, inoculated with estuarine sediment originating from the Wadden Sea (The Netherlands). MT was almost completely degraded (>95%) to sulfide, methane and carbon dioxide at volumetric loading rates up to 37 mmol MT x L(-1) x day(-1), 0.5 M sodium (NaCl or NaHCO(3)) and between pH 7.3 and 8.4. Batch experiments revealed that inhibition of MT degradation started at sodium (both NaCl and NaHCO(3)) concentrations exceeding 0.8 M. Sulfide inhibited MT degradation already around 3 mM (pH 8.3).


Assuntos
Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Sedimentos Geológicos/microbiologia , Cloreto de Sódio/química , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Bactérias Anaeróbias/química , Biodegradação Ambiental
20.
Biotechnol Bioeng ; 97(5): 1053-63, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17216660

RESUMO

A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.


Assuntos
Poluentes Atmosféricos/metabolismo , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/metabolismo , Modelos Biológicos , Proteobactérias/metabolismo , Biodegradação Ambiental , Simulação por Computador , Gases/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...