Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(9): 222, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548749

RESUMO

Bacterial spot is a highly damaging tomato disease caused by members of several species of the genus Xanthomonas. Bacteriophages have been studied for their potential use in the biological control of bacterial diseases. In the current study, bacteriophages were obtained from soil and tomato leaves in commercial fields in Brazil with the aim of obtaining biological control agents against bacterial spot. Phage isolation was carried out by co-cultivation with isolates of Xanthomonas euvesicatoria pv. perforans, which was prevalent in the collection areas. In a host range evaluation, none of the phage isolates was able to induce a lytic cycle in all of the bacterial isolates tested. In in vivo tests, treatment of susceptible bacterial isolates with the corresponding phage prior to application to tomato plants led to a reduction in the severity of the resulting disease. The level of disease control provided by phage application was equal to or greater than that achieved using copper hydroxide. Electron microscopy analysis showed that all of the phages had similar morphology, with head and tail structures similar to those of viruses belonging to the class Caudoviricetes. The presence of short, non-contractile tubular tails strongly suggested that these phages belong to the family Autographiviridae. This was confirmed by phylogenetic analysis, which further revealed that they all belong to the genus Pradovirus. The phages described here are closely related to each other and potentially belong to a new species within the genus. These phages will be evaluated in future studies against other tomato xanthomonad strains to assess their potential as biological control agents.


Assuntos
Bacteriófagos , Caudovirales , Solanum lycopersicum , Bacteriófagos/genética , Filogenia , Brasil , Agentes de Controle Biológico , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Viruses ; 15(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992466

RESUMO

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Assuntos
Culicidae , Vírus da Febre Amarela , Humanos , Animais , Vírus da Febre Amarela/genética , Estações do Ano , Brasil/epidemiologia , Mosquitos Vetores
3.
Microb Pathog ; 171: 105728, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028070

RESUMO

Circa 20 years ago, a new type of defense mechanism was described in neutrophils. At the time, this mechanism corresponded to the extrusion of DNA, associated with histones, granular and cytosolic proteins from the cell and it was produced in response to exposure to pathogens or interleukins. The resulting NET-like structure was described as to entrap and/or kill microbes. However, shortly after the discovery the so-called Neutrophil Extracellular Traps, it was soon noticed and often mentioned in the literature that certain microbes are able to evade NET-mediated entrapment and/or death, to the point where its antimicrobial capacities were questioned, depending on the infection context. In this review, we summarize the diversity of strategies published thus far that viruses, fungi, bacteria and protists employ as to prevent or endure NETs. Moreover, we point to a few perspectives on the matter and a few evolutionary speculations on NETs evasion.


Assuntos
Anti-Infecciosos , Armadilhas Extracelulares , Anti-Infecciosos/metabolismo , DNA/metabolismo , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Neutrófilos/microbiologia
4.
Front Microbiol ; 12: 732324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899623

RESUMO

Antimicrobial resistance (AMR) is an increasing and urgent issue for human health worldwide, as it leads to the reduction of available antibiotics to treat bacterial infections, in turn increasing hospital stays and lethality. Therefore, the study and genomic surveillance of bacterial carriers of resistance in and outside of clinical settings is of utter importance. A colony of multidrug resistant (MDR) bacteria identified as Klebsiella spp., by 16S rDNA amplicon sequencing, has been isolated from an urban lake in Brazil, during a drug-degrading bacterial prospection. Genomic analyses revealed the bacteria as Klebsiella pneumoniae species. Furthermore, the in silico Multilocus Sequence Typing (MLST) identified the genome as a new sequence type, ST5236. The search for antimicrobial resistance genes (ARGs) detected the presence of genes against beta-lactams, fosfomycin, acriflavine and efflux pumps, as well as genes for heavy metal resistance. Of particular note, an extended-spectrum beta-lactamase gene (blaCTX-M-15) has been detected in close proximity to siphoviridae genes, while a carbapenemase gene (KPC-2) has been found in an extrachromosomal contig, within a novel non-Tn4401 genetic element (NTEKPC). An extrachromosomal contig found in the V3 isolate is identical to a contig of a K. pneumoniae isolate from a nearby hospital, which indicates a putative gene flow from the hospital network into Paranoá lake. The discovery of a MDR isolate in this lake is worrisome, as the region has recently undergone periods of water scarcity causing the lake, which receives treated wastewater effluent, and is already used for recreational purposes, to be used as an environmental buffer for drinking water reuse. Altogether, our results indicate an underrepresentation of environmental K. pneumoniae among available genomes, which may hamper the understanding of the population dynamics of the species in the environment and its consequences in the spread of ARGs and virulence genes.

5.
J Immunol Res ; 2016: 5267485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635405

RESUMO

It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.


Assuntos
Antígenos de Helmintos/imunologia , Doenças Autoimunes/terapia , Interações Hospedeiro-Parasita , Inflamação/terapia , Schistosoma/química , Schistosoma/imunologia , Animais , Modelos Animais de Doenças , Helmintos/química , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...