Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Nutr ; : 100264, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971229

RESUMO

Malnutrition among the population of the world is a frequent yet underdiagnosed problem in both children and adults. Development of malnutrition screening and diagnostic tools for early detection of malnutrition is necessary to prevent long-term complications to patients' health and well-being. Most of these tools are based on predefined questionnaires and consensus guidelines. The use of artificial intelligence (AI) allows for automated tools to detect malnutrition in an earlier stage to prevent long-term consequences. In this study, a systematic literature review was carried out with the goal of providing detailed information on what patient groups, screening tools, machine learning algorithms, data types, and variables are being used as well as the current limitations and implementation stage of these AI based tools. The results showed that a staggering majority exceeding 90 percent of all AI models go unused in day-to-day clinical practice. Furthermore, supervised learning models seemed to be the most popular type of learning. Alongside this, disease-related malnutrition was the most common category of malnutrition found in the analysis of all primary studies. The current research provides a resource for researchers to identify directions for their research on the use of AI in in Malnutrition.

2.
Environ Sci Technol ; 56(23): 17375-17384, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399796

RESUMO

The crucial role of healthy soil in achieving sustainable food production and environment is increasingly recognized, as is the importance of proper assessment of soil quality. We introduce a new framework, open soil index (OSI), which integrally evaluates soil health of agricultural fields and provides recommendation for farming practices. The OSI is an open-source modular framework in which soil properties, functions, indicators and scores, and management advice are linked hierarchically. Soil health is evaluated with respect to sustainable crop production but can be extended to other ecosystem functions. The OSI leverages the existing knowledge base of agronomic research and routine laboratory data, enabling its application with limited cost. The OSI is a generic framework that can be adopted for specific regions with specific objectives. As a proof of concept, the OSI is implemented for all (>700,000) Dutch agricultural fields and illustrated with 11 pairs ("good" and "poor") of local fields and 32 fields where soil quality and crop yield have been monitored. The OSI produced reasonable evaluation for most pairs when soil physical functions were refined with on-site soil visual assessment. The soil functions are sufficiently independent and yet together reflect complex multidimensionality of soil quality. The framework can facilitate designing sustainable soil management programs by bridging regional targets to field-level actions.


Assuntos
Ecossistema , Solo , Agricultura
3.
Agric Syst ; 155: 200-212, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701813

RESUMO

Agricultural modeling has long suffered from fragmentation in model implementation. Many models are developed, there is much redundancy, models are often poorly coupled, model component re-use is rare, and it is frequently difficult to apply models to generate real solutions for the agricultural sector. To improve this situation, we argue that an open, self-sustained, and committed community is required to co-develop agricultural models and associated data and tools as a common resource. Such a community can benefit from recent developments in information and communications technology (ICT). We examine how such developments can be leveraged to design and implement the next generation of data, models, and decision support tools for agricultural production systems. Our objective is to assess relevant technologies for their maturity, expected development, and potential to benefit the agricultural modeling community. The technologies considered encompass methods for collaborative development and for involving stakeholders and users in development in a transdisciplinary manner. Our qualitative evaluation suggests that as an overall research challenge, the interoperability of data sources, modular granular open models, reference data sets for applications and specific user requirements analysis methodologies need to be addressed to allow agricultural modeling to enter in the big data era. This will enable much higher analytical capacities and the integrated use of new data sources. Overall agricultural systems modeling needs to rapidly adopt and absorb state-of-the-art data and ICT technologies with a focus on the needs of beneficiaries and on facilitating those who develop applications of their models. This adoption requires the widespread uptake of a set of best practices as standard operating procedures.

4.
Agric Syst ; 155: 240-254, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701816

RESUMO

Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be considered to help avoid roadblocks and pitfalls as the community develops this next generation of agricultural systems models.

5.
Agric Syst ; 155: 269-288, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701818

RESUMO

We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

6.
Environ Manage ; 46(6): 862-77, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21113782

RESUMO

Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.


Assuntos
Agricultura/economia , Modelos Biológicos , Modelos Econômicos , Agricultura/métodos , Conservação dos Recursos Naturais , Meio Ambiente , Política Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...