Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
iScience ; 27(6): 109949, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799567

RESUMO

As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.

2.
Nat Aging ; 4(5): 681-693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609524

RESUMO

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.


Assuntos
Envelhecimento , Exercício Físico , Músculo Esquelético , Humanos , Animais , Envelhecimento/metabolismo , Feminino , Camundongos , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Masculino , Lipidômica , Lisofosfolipídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Idoso , Metabolismo dos Lipídeos/fisiologia , Monoglicerídeos/metabolismo , Adulto , Pessoa de Meia-Idade
3.
iScience ; 27(1): 108681, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269100

RESUMO

Aging increases the risk of age-related diseases, imposing substantial healthcare and personal costs. Targeting fundamental aging mechanisms pharmacologically can promote healthy aging and reduce this disease susceptibility. In this work, we employed transcriptome-based drug screening to identify compounds emulating transcriptional signatures of long-lived genetic interventions. We discovered compound 60 (Cmpd60), a selective histone deacetylase 1 and 2 (HDAC1/2) inhibitor, mimicking diverse longevity interventions. In extensive molecular, phenotypic, and bioinformatic assessments using various cell and aged mouse models, we found Cmpd60 treatment to improve age-related phenotypes in multiple organs. Cmpd60 reduces renal epithelial-mesenchymal transition and fibrosis in kidney, diminishes dementia-related gene expression in brain, and enhances cardiac contractility and relaxation for the heart. In sum, our two-week HDAC1/2 inhibitor treatment in aged mice establishes a multi-tissue, healthy aging intervention in mammals, holding promise for therapeutic translation to promote healthy aging in humans.

4.
FEBS J ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245827

RESUMO

Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.

5.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984625

RESUMO

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Assuntos
Infecções por HIV , Inibidores da Transcriptase Reversa , Humanos , Inibidores da Transcriptase Reversa/efeitos adversos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Reposicionamento de Medicamentos , Infecções por HIV/tratamento farmacológico , Envelhecimento
6.
Hum Reprod ; 38(11): 2208-2220, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37671592

RESUMO

STUDY QUESTION: Are human ovarian aging and the age-related female fertility decline caused by oxidative stress and mitochondrial dysfunction in oocytes? SUMMARY ANSWER: We found oxidative damage in oocytes of advanced maternal age, even at the primordial follicle stage, and confirmed mitochondrial dysfunction in such oocytes, which likely resulted in the use of alternative energy sources. WHAT IS KNOWN ALREADY: Signs of reactive oxygen species-induced damage and mitochondrial dysfunction have been observed in maturing follicles, and even in early stages of embryogenesis. However, although recent evidence indicates that also primordial follicles have metabolically active mitochondria, it is still often assumed that these follicles avoid oxidative phosphorylation to prevent oxidative damage in dictyate arrested oocytes. Data on the influence of ovarian aging on oocyte metabolism and mitochondrial function are still limited. STUDY DESIGN, SIZE, DURATION: A set of 39 formalin-fixed and paraffin-embedded ovarian tissue biopsies were divided into different age groups and used for immunofluorescence analysis of oxidative phosphorylation activity and oxidative damage to proteins, lipids, and DNA. Additionally, 150 immature oocytes (90 germinal vesicle oocytes and 60 metaphase I oocytes) and 15 cumulus cell samples were divided into different age groups and used for targeted metabolomics and lipidomics analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian tissues used for immunofluorescence microscopy were collected through PALGA, the nationwide network, and registry of histo- and cytopathology in The Netherlands. Comprehensive metabolomics and lipidomics were performed by liquid-liquid extraction and full-scan mass spectrometry, using oocytes and cumulus cells of women undergoing ICSI treatment based on male or tubal factor infertility, or fertility preservation for non-medical reasons. MAIN RESULTS AND THE ROLE OF CHANCE: Immunofluorescence imaging on human ovarian tissue indicated oxidative damage by protein and lipid (per)oxidation already at the primordial follicle stage. Metabolomics and lipidomics analysis of oocytes and cumulus cells in advanced maternal-age groups demonstrated a shift in the glutathione-to-oxiglutathione ratio and depletion of phospholipids. Age-related changes in polar metabolites suggested a decrease in mitochondrial function, as demonstrated by NAD+, purine, and pyrimidine depletion, while glycolysis substrates and glutamine accumulated, with age. Oocytes from women of advanced maternal age appeared to use alternative energy sources like glycolysis and the adenosine salvage pathway, and possibly ATP which showed increased production in cumulus cells. LIMITATIONS, REASONS FOR CAUTION: The immature oocytes used in this study were all subjected to ovarian stimulation with high doses of follicle-stimulating hormones, which might have concealed some age-related differences. WIDER IMPLICATIONS OF THE FINDINGS: Further studies on how to improve mitochondrial function, or lower oxidative damage, in oocytes from women of advanced maternal age, for instance by supplementation of NAD+ precursors to promote mitochondrial biogenesis, are warranted. In addition, supplementing the embryo medium of advanced maternal-age embryos with such compounds could be a treatment option worth exploring. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by the Amsterdam UMC. The authors declare to have no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
NAD , Oócitos , Humanos , Feminino , Masculino , NAD/metabolismo , Oócitos/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Envelhecimento
7.
Aging (Albany NY) ; 15(12): 5240-5265, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37341993

RESUMO

Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R2 = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.


Assuntos
MicroRNAs , Proteômica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sequência de Bases , Proteínas/genética , Plasma , Análise de Sequência de RNA
8.
Geroscience ; 45(6): 3147-3164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259015

RESUMO

The degenerative processes that occur during aging increase the risk of disease and impaired health. Meanwhile, interventions that target aging to promote healthy longevity are gaining interest, both academically and in the public. While nutritional and physical interventions exist, efficacy is often difficult to determine. It is therefore imperative that an aging score measuring the biological aging process is available to the wider public. However, simple, interpret, and accessible biological aging scores are lacking. Here, we developed PhysiAge, a physiological aging score based on five accessible parameters that have influence on or reflect the aging process: (1) average daily step count, (2) blood glucose, (3) systolic blood pressure, (4) sex, and (5) age. Here, we found that compared to calendar age alone, PhysiAge better predicts mortality, as well as established muscle aging markers such as decrease in NAD+ levels, increase in oxidative stress, and decline in physical functioning. In order to demonstrate the usefulness of PhysiAge in identifying relevant factors associated with decelerated aging, we calculated PhysiAges for a cohort of aged individuals and obtained mass spectrometry-based blood plasma metabolomic profiles for each individual. Here, we identified a metabolic signature of decelerated aging, which included components of the TCA cycle, including malate, citrate, and isocitrate. Higher abundance of these metabolites was associated with decelerated aging, in line with supplementation studies in model organisms. PhysiAge represents an accessible way for people to track and intervene in their aging trajectories, and identifies a metabolic signature of decelerated aging in human blood plasma, which can be further studied for its causal involvement in human aging.


Assuntos
Envelhecimento , Longevidade , Humanos , Idoso , Envelhecimento/fisiologia , Longevidade/fisiologia , Metabolômica , Estresse Oxidativo , Plasma
9.
Geroscience ; 45(5): 2939-2950, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204639

RESUMO

Remote monitoring technologies (RMTs) allow continuous, unobtrusive, and real-time monitoring of the cardiovascular system. An overview of existing RMTs measuring cardiovascular physiological variables is lacking. This systematic review aimed to describe RMTs measuring cardiovascular functions in community-dwelling adults. An electronic search was conducted via PubMed, EMBASE, and Cochrane Library from January 1, 2020, to April 7, 2022. Articles reporting on non-invasive RMTs used unsupervised in community-dwelling adults were included. Reviews and studies in institutionalized populations were excluded. Two reviewers independently assessed the studies and extracted the technologies used, cardiovascular variables measured, and wearing locations of RMTs. Validation of the RMTs was examined based on the COSMIN tool, and accuracy and precision were presented. This systematic review was registered with PROSPERO (CRD42022320082). A total of 272 articles were included representing 322,886 individuals with a mean or median age from 19.0 to 88.9 years (48.7% female). Of all 335 reported RMTs containing 216 distinct devices, photoplethysmography was used in 50.3% of RMTs. Heart rate was measured in 47.0% of measurements, and the RMT was worn on the wrist in 41.8% of devices. Nine devices were reported in more than three articles, of which all were sufficiently accurate, six were sufficiently precise, and four were commercially available in December 2022. The top four most reported technologies were AliveCor KardiaMobile®, Fitbit Charge 2, and Polar H7 and H10 Heart Rate Sensors. With over 200 distinct RMTs reported, this review provides healthcare professionals and researchers an overview of available RMTs for monitoring the cardiovascular system.


Assuntos
Sistema Cardiovascular , Tecnologia de Sensoriamento Remoto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Vida Independente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
10.
Sci Rep ; 13(1): 8391, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225705

RESUMO

Maintaining mitochondrial function is critical to an improved healthspan and lifespan. Introducing mild stress by inhibiting mitochondrial translation invokes the mitochondrial unfolded protein response (UPRmt) and increases lifespan in several animal models. Notably, lower mitochondrial ribosomal protein (MRP) expression also correlates with increased lifespan in a reference population of mice. In this study, we tested whether partially reducing the gene expression of a critical MRP, Mrpl54, reduced mitochondrial DNA-encoded protein content, induced the UPRmt, and affected lifespan or metabolic health using germline heterozygous Mrpl54 mice. Despite reduced Mrpl54 expression in multiple organs and a reduction in mitochondrial-encoded protein expression in myoblasts, we identified few significant differences between male or female Mrpl54+/- and wild type mice in initial body composition, respiratory parameters, energy intake and expenditure, or ambulatory motion. We also observed no differences in glucose or insulin tolerance, treadmill endurance, cold tolerance, heart rate, or blood pressure. There were no differences in median life expectancy or maximum lifespan. Overall, we demonstrate that genetic manipulation of Mrpl54 expression reduces mitochondrial-encoded protein content but is not sufficient to improve healthspan in otherwise healthy and unstressed mice.


Assuntos
Longevidade , Ribossomos , Feminino , Masculino , Animais , Camundongos , Longevidade/genética , Composição Corporal , Expectativa de Vida , Expressão Gênica
11.
Ageing Res Rev ; 87: 101929, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031727

RESUMO

Age-related loss of function brings age-related disease, and therefore it is of primary importance to search for interventions that can help minimize detrimental symptoms people deal with in old age. Fungi have always been given a great deal of attention and reverence in traditional medical practices for their ability to minimize harmful symptoms of diseases. More recently, the role of fungi in influencing healthspan and lifespan is being directly studied in the lab. To treat animal model organisms with fungi-derived molecules, extractions from different life cycle stages of fungi are performed. This includes mycelium (the vegetative stage), sporocarps (the reproductive stage), or spores (the end product of the reproductive stage), and each stage provides a variety of bioactive compounds. These bioactive compounds include glycoproteins, polysaccharides, triterpenoids, meroterpenoids, sesquiterpenoids, steroids, alkaloids, benzopyran derivatives, and benzoic acid derivatives, amongst others. In this work, we review evidence that fungal extracts from multiple species can have beneficial effects on the lifespan and healthspan of model organisms, such as C. elegans worms, D. melanogaster flies, and M. musculus mice. We cover extraction methods and lifespan effects of Ganoderma lucidum (i.e. Reishi), Lentinula edodes (i.e. Shiitake), the genus Auricularia (i.e. jelly ear mushrooms), the genera Cordyceps and Ophiocordyceps (e.g. the caterpillar fungi), Hericium erinaceus (i.e. Lion's mane), the mold genus Monascus, and also Inonotus obliquus (i.e. Chaga), Grifola frondosa (i.e. Maitake or hen-of-the-woods), the genus Pleurotus (e.g. oyster mushrooms), and Agaricus subrufescens (i.e. the almond mushroom). We propose that further research on fungal extracts will provide a greater picture of the role fungi-derived bioactive molecules can have in developing longevity and neuroprotective medicines for humans.


Assuntos
Caenorhabditis elegans , Longevidade , Animais , Feminino , Humanos , Camundongos , Galinhas , Drosophila melanogaster , Fungos
12.
Cell Rep ; 42(1): 111928, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640360

RESUMO

The human population is aging, and the need for interventions to slow progression of age-related diseases (geroprotective interventions) is growing. Repurposing compounds already used clinically, usually at modified doses, allows rapid implementation of geroprotective pharmaceuticals. Here we find the anti-retroviral nucleoside reverse transcriptase inhibitor (NRTI) zidovudine robustly extends lifespan and health span in C. elegans, independent of electron transport chain impairment or ROS accumulation. Rather, zidovudine treatment modifies pyrimidine metabolism and transcripts related to proteostasis. Testing regulators of mitochondrial stress and proteostasis shows that lifespan extension is dependent on activating transcription factor 4 (ATF-4). ATF-4 regulates longevity induced by mitochondrial stress, specifically communication between mitochondrial and cytosolic translation. Translation is reduced in zidovudine-treated worms, also dependent on ATF-4. Finally, we show ATF-4-dependent lifespan extension induced by didanosine, another NRTI. Altogether, our work elucidates the geroprotective effects of NRTIs such as zidovudine in vivo, via reduction of translation and ATF-4.


Assuntos
Infecções por HIV , Zidovudina , Animais , Humanos , Zidovudina/farmacologia , Zidovudina/uso terapêutico , Longevidade , Fator 4 Ativador da Transcrição , Caenorhabditis elegans/fisiologia , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Retroviridae , Infecções por HIV/tratamento farmacológico
13.
Cell Rep ; 41(11): 111786, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516749

RESUMO

24 h whole-body substrate metabolism and the circadian clock within skeletal muscle are both compromised upon metabolic disease in humans. Here, we assessed the 24 h muscle metabolome by serial muscle sampling performed under 24 h real-life conditions in young, healthy (YH) men versus older, metabolically compromised (OMC) men. We find that metabolites associated with the initial steps of glycolysis and hexosamine biosynthesis are higher in OMC men around the clock, whereas metabolites associated with glutamine-alpha-ketoglutarate, ketone, and redox metabolism are lower in OMC men. The night period shows the largest number of differently expressed metabolites. Both groups demonstrate 24 h rhythmicity in half of the metabolome, but rhythmic metabolites only partially overlap. Specific metabolites are only rhythmic in YH men (adenosine), phase shifted in OMC men (cis-aconitate, flavin adenine dinucleotide [FAD], and uridine diphosphate [UDP]), or have a reduced 24 h amplitude in OMC men (hydroxybutyrate and hippuric acid). Our data highlight the plasticity of the skeletal muscle metabolome over 24 h and large divergence across the metabolic health spectrum.


Assuntos
Relógios Circadianos , Metaboloma , Masculino , Humanos , Músculo Esquelético/metabolismo , Glicólise , Oxirredução , Ritmo Circadiano/fisiologia
14.
Aging (Albany NY) ; 14(15): 5962-5963, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35939337
15.
Front Aging ; 3: 903049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821857

RESUMO

Public attention and interest for longevity interventions are growing. These can include dietary interventions such as intermittent fasting, physical interventions such as various exercise regimens, or through supplementation of nutraceuticals or administration of pharmaceutics. However, it is unlikely that most interventions identified in model organisms will translate to humans, or that every intervention will benefit each person equally. In the worst case, even detrimental health effects may occur. Therefore, identifying longevity interventions using human data and tracking the aging process in people is of paramount importance as we look towards longevity interventions for the public. In this work, we illustrate how to identify candidate longevity interventions using population data in humans, an approach we have recently employed. We consider metformin as a case-study for potential confounders that influence effectiveness of a longevity intervention, such as lifestyle, sex, genetics, age of administration and the microbiome. Indeed, metformin, like most other longevity interventions, may end up only benefitting a subgroup of individuals. Fortunately, technologies have emerged for tracking the rate of 'biological' aging in individuals, which greatly aids in assessing effectiveness. Recently, we have demonstrated that even wearable devices, accessible to everyone, can be used for this purpose. We therefore propose how to use such approaches to test interventions in the general population. In summary, we advocate that 1) not all interventions will be beneficial for each individual and therefore 2) it is imperative that individuals track their own aging rates to assess healthy aging interventions.

16.
Ageing Res Rev ; 78: 101621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421606

RESUMO

Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Idoso , Envelhecimento/genética , Suplementos Nutricionais , Proteína Forkhead Box O3/genética , Humanos , Longevidade/fisiologia , Preparações Farmacêuticas
17.
Sci Rep ; 12(1): 3350, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233004

RESUMO

Deregulated energy homeostasis represents a hallmark of aging and results from complex gene-by-environment interactions. Here, we discovered that reducing the expression of the gene ech-6 encoding enoyl-CoA hydratase remitted fat diet-induced deleterious effects on lifespan in Caenorhabditis elegans, while a basal expression of ech-6 was important for survival under normal dietary conditions. Lipidomics revealed that supplementation of fat in ech-6-silenced worms had marginal effects on lipid profiles, suggesting an alternative fat utilization for energy production. Transcriptomics further suggest a causal relation between the lysosomal pathway, energy production, and the longevity effect conferred by the interaction between ech-6 and fat diets. Indeed, enhancing energy production from endogenous fat by overexpressing lysosomal lipase lipl-4 recapitulated the lifespan effects of fat diets on ech-6-silenced worms. Collectively, these results suggest that the gene ech-6 is potential modulator of metabolic flexibility and may be a target for promoting metabolic health and longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envelhecimento/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Lisossomos/metabolismo
18.
Nat Aging ; 2(3): 254-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118369

RESUMO

Skeletal muscle is greatly affected by aging, resulting in a loss of metabolic and physical function. However, the underlying molecular processes and how (lack of) physical activity is involved in age-related metabolic decline in muscle function in humans is largely unknown. Here, we compared, in a cross-sectional study, the muscle metabolome from young to older adults, whereby the older adults were exercise trained, had normal physical activity levels or were physically impaired. Nicotinamide adenine dinucleotide (NAD+) was one of the most prominent metabolites that was lower in older adults, in line with preclinical models. This lower level was even more pronounced in impaired older individuals, and conversely, exercise-trained older individuals had NAD+ levels that were more similar to those found in younger individuals. NAD+ abundance positively correlated with average number of steps per day and mitochondrial and muscle functioning. Our work suggests that a clear association exists between NAD+ and health status in human aging.


Assuntos
Envelhecimento Saudável , NAD , Humanos , Idoso , NAD/metabolismo , Estudos Transversais , Envelhecimento/metabolismo , Músculo Esquelético/metabolismo
19.
Diabetologia ; 64(12): 2817-2828, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510226

RESUMO

AIMS/HYPOTHESIS: In our current society sedentary behaviour predominates in most people and is associated with the risk of developing type 2 diabetes. It has been suggested that replacing sitting time by standing and walking could be beneficial for individuals with type 2 diabetes but the underlying mechanisms are unknown and direct comparisons with exercise are lacking. Our objective was to directly compare metabolic responses of either sitting less or exercising, relative to being sedentary. METHODS: We performed a randomised, crossover intervention study in 12 overweight women who performed three well-controlled 4 day activity regimens: (1) sitting regimen (sitting 14 h/day); (2) exercise regimen (sitting 13 h/day, exercise 1 h/day); and (3) sitting less regimen (sitting 9 h/day, standing 4 h/day and walking 3 h/day). The primary outcome was insulin sensitivity measured by a two-step hyperinsulinaemic-euglycaemic clamp. We additionally performed metabolomics on muscle biopsies taken before the clamp to identify changes at the molecular level. RESULTS: Replacing sitting time by standing and walking over 4 days resulted in improved peripheral insulin sensitivity, comparable with the improvement achieved by moderate-to-vigorous exercise. Specifically, we report a significant improvement in peripheral insulin sensitivity in the sitting less (~13%) and the exercise regimen (~20%), compared with the sitting regimen. Furthermore, sitting less shifted the underlying muscle metabolome towards that seen with moderate-to-vigorous exercise, compared with the sitting regimen. CONCLUSIONS/INTERPRETATIONS: Replacing sitting time by standing and walking is an attractive alternative to moderate-to-vigorous exercise for improving metabolic health. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912922.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Pós-Menopausa , Postura Sentada , Caminhada/fisiologia
20.
Aging Cell ; 20(8): e13381, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227219

RESUMO

Transcriptome-based drug screening is emerging as a powerful tool to identify geroprotective compounds to intervene in age-related disease. We hypothesized that, by mimicking the transcriptional signature of the highly conserved longevity intervention of FOXO3 (daf-16 in worms) overexpression, we could identify and repurpose compounds with similar downstream effects to increase longevity. Our in silico screen, utilizing the LINCS transcriptome database of genetic and compound interventions, identified several FDA-approved compounds that activate FOXO downstream targets in mammalian cells. These included the neuromuscular blocker atracurium, which also robustly extends both lifespan and healthspan in Caenorhabditis elegans. This longevity is dependent on both daf-16 signaling and inhibition of the neuromuscular acetylcholine receptor subunit unc-38. We found unc-38 RNAi to improve healthspan, lifespan, and stimulate DAF-16 nuclear localization, similar to atracurium treatment. Finally, using RNA-seq transcriptomics, we identify atracurium activation of DAF-16 downstream effectors. Together, these data demonstrate the capacity to mimic genetic lifespan interventions with drugs, and in doing so, reveal that the neuromuscular acetylcholine receptor regulates the highly conserved FOXO/DAF-16 longevity pathway.


Assuntos
Atracúrio/uso terapêutico , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Receptores Colinérgicos/metabolismo , Animais , Atracúrio/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...