Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(17): e70038, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238069

RESUMO

Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD. In vitro studies revealed that OPN enhanced the proliferation of PKD cells but had no effect on normal kidney cells. Deletion of OPN in pcy/pcy mice significantly reduced kidney cyst burden; however, this was accompanied by increased fibrosis and no change in kidney function. The loss of OPN had no effect on kidney macrophage numbers, cyst epithelial cell proliferation, or apoptosis. Furthermore, there was no difference in kidney mineral deposition or mineral metabolism parameters between pcy/pcy mice with and without OPN expression. Global deletion of OPN reduced kidney cyst burden, while paradoxically exacerbating kidney fibrosis in mice with cystic kidney disease.


Assuntos
Fibrose , Osteopontina , Animais , Feminino , Humanos , Masculino , Camundongos , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/metabolismo , Rim/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/metabolismo , Osteopontina/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/genética
2.
Front Mol Biosci ; 9: 971219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523654

RESUMO

We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1ß and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.

3.
Kidney360 ; 3(9): 1578-1589, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36245654

RESUMO

Background: Nephron loss dramatically increases tubular phosphate to concentrations that exceed supersaturation. Osteopontin (OPN) is a matricellular protein that enhances mineral solubility in solution; however, the role of OPN in maintaining urinary phosphate solubility in CKD remains undefined. Methods: Here, we examined (1) the expression patterns and timing of kidney/urine OPN changes in CKD mice, (2) if tubular injury is necessary for kidney OPN expression in CKD, (3) how OPN deletion alters kidney mineral deposition in CKD mice, (4) how neutralization of the mineral-binding (ASARM) motif of OPN alters kidney mineral deposition in phosphaturic mice, and (5) the in vitro effect of phosphate-based nanocrystals on tubular epithelial cell OPN expression. Results: Tubular OPN expression was dramatically increased in all studied CKD murine models. Kidney OPN gene expression and urinary OPN/Cr ratios increased before changes in traditional biochemical markers of kidney function. Moreover, a reduction of nephron numbers alone (by unilateral nephrectomy) was sufficient to induce OPN expression in residual nephrons and induction of CKD in OPN-null mice fed excess phosphate resulted in severe nephrocalcinosis. Neutralization of the ASARM motif of OPN in phosphaturic mice resulted in severe nephrocalcinosis that mimicked OPN-null CKD mice. Lastly, in vitro experiments revealed calcium-phosphate nanocrystals to induce OPN expression by tubular epithelial cells directly. Conclusions: Kidney OPN expression increases in early CKD and serves a critical role in maintaining tubular mineral solubility when tubular phosphate concentrations are exceedingly high, as in late-stage CKD. Calcium-phosphate nanocrystals may be a proximal stimulus for tubular OPN production.


Assuntos
Nefrocalcinose , Insuficiência Renal Crônica , Animais , Camundongos , Biomarcadores , Cálcio , Fosfatos de Cálcio , Camundongos Knockout , Osteopontina/genética , Solubilidade
4.
Curr Opin Nephrol Hypertens ; 31(4): 306-311, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283435

RESUMO

PURPOSE OF REVIEW: Progressive forms of chronic kidney disease (CKD) exhibit kidney inflammation and fibrosis that drive continued nephron loss; however, factors responsible for the development of these common pathologic features remain poorly defined. Recent investigations suggest pathways involved in maintaining urinary phosphate excretion in CKD may be contributing to kidney function decline. This review provides an update on recent evidence linking altered phosphate homeostasis to CKD progression. RECENT FINDINGS: High dietary phosphate intake and increased serum concentrations of fibroblast growth factor 23 (FGF23) both increase urinary phosphate excretion and are associated with increased risk of kidney function decline. Recent investigations have discovered high concentrations of tubular phosphate promote phosphate-based nanocrystal formation that drives tubular injury, cyst formation, and fibrosis. SUMMARY: Studies presented in this review highlight important scientific discoveries that have molded our current understanding of the contribution of altered phosphate homeostasis to CKD progression. The collective observations from these investigations implicate phosphaturia, and the resulting formation of phosphate-based crystals in tubular fluid, as unique risk factors for kidney function decline. Developing a better understanding of the relationship between tubular phosphate handling and kidney pathology could result in innovative strategies for improving kidney outcomes in patients with CKD.


Assuntos
Fosfatos , Insuficiência Renal Crônica , Doença Crônica , Fatores de Crescimento de Fibroblastos/metabolismo , Fibrose , Humanos , Rim/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA