Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 054004, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364149

RESUMO

Current models predict particles of the same material but different sizes to charge bipolar upon contacts; the resulting charge peaks endanger process safety. However, we found wall-bounded turbulence to suppress the powder's electrostatic charging. Aerodynamic forces skew the collision frequency and narrow the charge distribution's bandwidth. Bipolar charging reduces, especially in moderately polydisperse systems of a low Stokes number. Not the smallest but midsized particles charge most negatively. Moreover, turbulence separates charge, producing pockets of high electric potential in low-vorticity regions.

2.
Polymers (Basel) ; 13(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198669

RESUMO

This paper presents technological modifications of an electrostatic spinning device, which significantly increase the thickness homogeneity (i.e., quality) of produced layers by creating auxiliary dynamic electric fields in the vicinity of the spinning and collector electrodes. A moving body was installed above the needleless spinning electrode, which destabilized the standing wave occurring on the free surface of the spinning solution. Furthermore, an endless belt design was used for the collector electrode instead of a roll-to-roll design, which made it possible to substantially increase the surface speed of the substrate and, therefore, the dynamics of the electric field at the place of collection of the fibers being spun. As a result, the coefficient of variation of the area weight of 912 samples cut out from the deposited nanofibrous layer, which was (1000 × 500) mm2 in size and had an average area weight of (17.2 ± 0.8) g/m2, was less than 4.5%. These results were obtained only when the dynamics of both the spinning and collector electrodes were increased at the same time. These modifications resulted in a significant increase in the quality of deposited nanofibrous layers up to the standard required for their use in pharmaceutical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA