Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123477, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307239

RESUMO

Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, we aimed to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals. Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of excitatory synaptic transmission was specifically increased in NOAEL conditions, with a predominant influence in males, suggesting a reduced probability of neurotransmitter release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed mice. Next, we explore whether these neurophysiological modifications are associated with neuro-glia changes in the somatosensory cortex and hippocampus. High-resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Vglut1+ Homer1+ synapses. Microglial Iba1+ cells displayed a shortening of their ramifications, a sign of cellular reactivity that was more pronounced in males at NOAEL levels. The morphology of GFAP+ astrocytes was generally not modified. Finally, we asked whether mouse-specific cross-correlations exist among all data sets generated. This examination included the novel object recognition (NOR) test performed before ex vivo functional and immunohistochemical examinations. We report a negative linear regression between the number of synapses and NOR or LTP maintenance when plotting ADI and NOAEL datasets. These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the potential significance of these findings to real-world consumer situations and long-term brain resilience.


Assuntos
Glifosato , Microglia , Camundongos , Masculino , Feminino , Animais , Roedores , Exposição Dietética , Camundongos Endogâmicos C57BL , Encéfalo
2.
Neurobiol Dis ; 187: 106297, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717661

RESUMO

Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1ß, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1ß, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1ß upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.

3.
Acta Physiol (Oxf) ; 238(2): e13933, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625322

RESUMO

AIM: Retrospective studies suggest that mild traumatic brain injury (mTBI) in pediatric patients may lead to an increased risk of cardiac events. However, the exact functional and temporal dynamics and the associations between heart and brain pathophysiological trajectories are not understood. METHODS: A single impact to the left somatosensory cortical area of the intact skull was performed on juvenile mice (17 days postnatal). Cerebral 3D photoacoustic imaging was used to measure the oxygen saturation (sO2 ) in the impacted area 4 h after mTBI followed by 2D and 4D echocardiography at days 7, 30, 90, and 190 post-impact. At 8 months, we performed a dobutamine stress test to evaluate cardiac function. Lastly, behavioral analyses were conducted 1 year after initial injury. RESULTS: We report a rapid and transient decrease in cerebrovascular sO2 and increased hemoglobin in the impacted left brain cortex. Cardiac analyses showed long-term diastolic dysfunction and a diminished systolic strain response under stress in the mTBI group. At the molecular level, cardiac T-p38MAPK and troponin I expression was pathologic modified post-mTBI. We found linear correlations between brain sO2 measured immediately post-mTBI and long-term cardiac strain after 8 months. We report that initial cerebrovascular hypoxia and chronic cardiac dysfunction correlated with long-term behavioral changes hinting at anxiety-like and memory maladaptation. CONCLUSION: Experimental juvenile mTBI induces time-dependent cardiac dysfunction that corresponds to the initial neurovascular sO2 dip and is associated with long-term behavioral modifications. These imaging biomarkers of the heart-brain axis could be applied to improve clinical pediatric mTBI management.


Assuntos
Concussão Encefálica , Cardiopatias , Animais , Camundongos , Concussão Encefálica/complicações , Concussão Encefálica/patologia , Estudos Retrospectivos , Encéfalo , Córtex Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...