Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(11): 103054, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729677

RESUMO

The present study aims to evaluate the antimicrobial activity (in vitro study) of olive leaves powder (OLP) and its role in improving the broiler productivity, carcass criteria, blood indices, and antioxidant activity. A total of 270 one-day-old broiler chickens were distributed into 6 treatment groups as follows: the first group: basal diet without any supplementation, while the second, third, fourth, fifth, and sixth groups: basal diet supplemented with 50, 75, 100, 125, and 150 (µg/g), respectively. The in vitro study showed that the OLP has good antibacterial activity in the concentration-dependent matter; OLP 175 µg/mL inhibited the tested bacteria in the zones range of (0.8-4 cm), Klebsiella Pneumonaie (KP) was the most resistant bacteria to OLP concentration. The antioxidant activity of OLP increased with increasing the concentration of OLP compared to ascorbic acid, where OLP 175 µg/mL scavenged 91% of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals compared to 93% scavenging activity of ascorbic acid. Broiler chickens fed diets with OLP had significantly (P < 0.05) higher body weight (BW) and body weight growth (BWG) than the control birds. The treatment with OLP significantly reduced the feed intake (FI) and feed conversion rate (FCR) when compared to control. Groups supplemented with OLP showed decreased abdominal fat deposition and a significant increase in the net carcass and breast muscle weight. OLP improved birds' blood parameters in comparison with control birds. All pathogenic bacterial numbers in caecal samples were decreased with elevating OLP levels, but the cecal Lactobacillus bacterial count was increased. In conclusion, OLP supplementation improved broiler chickens' performance, carcass traits, and blood parameters. Moreover, OLP improved birds' liver functions (reduced Alanine transaminase [ALT] and aspartate aminotransferase [AST] levels) in comparison with control. In addition, OLP promoted the antioxidant status, minimized the harmful microbial load, and increased beneficial bacterial count in the cecal contents of broilers.

2.
Front Plant Sci ; 14: 1136961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152127

RESUMO

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

3.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903959

RESUMO

Heavy metal such as arsenite (AsIII) is a threat worldwide. Thus, to mitigate AsIII toxicity on plants, we investigated the interactive effect of olive solid waste (OSW) and arbuscular mycorrhizal fungi (AMF) on wheat plants under AsIII stress. To this end, wheat seeds were grown in soils treated with OSW (4% w/w), AMF-inoculation, and/or AsIII treated soil (100 mg/kg soil). AMF colonization is reduced by AsIII but to a lesser extent under AsIII + OSW. AMF and OSW interactive effects also improved soil fertility and increased wheat plants' growth, particularly under AsIII stress. The interactions between OSW and AMF treatments reduced AsIII-induced H2O2 accumulation. Less H2O2 production consequently reduced AsIII-related oxidative damages i.e., lipid peroxidation (malondialdehyde, MDA) (58%), compared to As stress. This can be explained by the increase in wheat's antioxidant defense system. OSW and AMF increased total antioxidant content, phenol, flavonoids, and α-tocopherol by approximately 34%, 63%, 118%, 232%, and 93%, respectively, compared to As stress. The combined effect also significantly induced anthocyanins accumulation. The combination of OSW+AMF improved antioxidants enzymes activity, where superoxide dismutase (SOD, catalase (CAT), peroxidase (POX), glutathione reductase (GR), and glutathione peroxidase (GPX) were increased by 98%, 121%, 105%, 129%, and 110.29%, respectively, compared to AsIII stress. This can be explained by induced anthocyanin percussors phenylalanine, cinamic acid and naringenin, and biosynthesic enzymes (phenylalanine aminolayse (PAL) and chalcone synthase (CHS)). Overall, this study suggested the effectiveness of OSW and AMF as a promising approach to mitigate AsIII toxicity on wheat growth, physiology, and biochemistry.

4.
Front Plant Sci ; 13: 872654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665142

RESUMO

Soil contamination with cobalt (Co) negatively impacts plant growth and production. To combat Co toxicity, plant growth-promoting microorganisms for improving plant growth are effectively applied. To this end, unclassified haloarchaeal species strain NRS_31 (OL912833), belonging to Haloferax genus, was isolated, identified for the first time, and applied to mitigate the Co phytotoxic effects on maize plants. This study found that high Co levels in soil lead to Co accumulation in maize leaves. Co accumulation in the leaves inhibited maize growth and photosynthetic efficiency, inducing oxidative damage in the tissue. Interestingly, pre-inoculation with haloarchaeal species significantly reduced Co uptake and mitigated the Co toxicity. Induced photosynthesis improved sugar metabolism, allocating more carbon to defend against Co stress. Concomitantly, the biosynthetic key enzymes involved in sucrose (sucrose-P-synthase and invertases) and proline (pyrroline-5- carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR)) biosynthesis significantly increased to maintain plant osmotic potential. In addition to their osmoregulation potential, soluble sugars and proline can contribute to maintaining ROS hemostasis. Maize leaves managed their oxidative homeostasis by increasing the production of antioxidant metabolites (such as phenolics and tocopherols) and increasing the activity of ROS-scavenging enzymes (such as POX, CAT, SOD, and enzymes involved in the AsA/GSH cycle). Inside the plant tissue, to overcome heavy Co toxicity, maize plants increased the synthesis of heavy metal-binding ligands (metallothionein, phytochelatins) and the metal detoxifying enzymes (glutathione S transferase). Overall, the improved ROS homeostasis, osmoregulation, and Co detoxification systems were the basis underlying Co oxidative stress, mitigating haloarchaeal treatment's impact.

5.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443845

RESUMO

Interactions of the receptor for advanced glycation end product (RAGE) and its ligands in the context of their role in diabetes mellitus, inflammation, and carcinogenesis have been extensively investigated. This review focuses on the role of RAGE-ligands and anti-RAGE drugs capable of controlling cancer progression. Different studies have demonstrated interaction of RAGE with a diverse range of acidic (negatively charged) ligands such as advanced glycation end products (AGEs), high-mobility group box1 (HMGB1), and S100s, and their importance to cancer progression. Some RAGE-ligands displayed effects on anti- and pro-apoptotic proteins through upregulation of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and nuclear factor kappa B (NF-κB) pathways, while downregulating p53 in cancer progression. In addition, RAGE may undergo ligand-driven multimodal dimerization or oligomerization mediated through self-association of some of its subunits. We conclude our review by proposing possible future lines of study that could result in control of cancer progression through RAGE inhibition.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas S100/antagonistas & inibidores , Proteínas S100/metabolismo , Transdução de Sinais
6.
Artigo em Inglês | MEDLINE | ID: mdl-29736177

RESUMO

There are a number of disorders that affect the gastrointestinal tract. Such disorders have become a global emerging disease with a high incidence and prevalence rates worldwide. Inflammatory and ulcerative processes of the stomach or intestines, such as gastritis, ulcers, colitis, and mucositis, afflict a significant proportion of people throughout the world. The role of herbal-derived medicines has been extensively explored in order to develop new effective and safe strategies to improve the available gastrointestinal therapies that are currently used in the clinical practice. Studies on the efficacy of propolis (a unique resinous aromatic substance produced by honeybees from different types of species of plants) are promising and propolis has been effective in the treatment of several pathological conditions. This review, therefore, summarizes and critiques the contents of some relevant published scientific papers (including those related to clinical trials) in order to demonstrate the therapeutic value of propolis and its active compounds in the treatment and prevention of gastrointestinal diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...