Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542501

RESUMO

Increased signs of DNA damage have been associated to aging and neurodegenerative diseases. DNA damage repair mechanisms are tightly regulated and involve different pathways depending on cell types and proliferative vs. postmitotic states. Amongst them, fused in sarcoma (FUS) was reported to be involved in different pathways of single- and double-strand break repair, including an early recruitment to DNA damage. FUS is a ubiquitously expressed protein, but if mutated, leads to a more or less selective motor neurodegeneration, causing amyotrophic lateral sclerosis (ALS). Of note, ALS-causing mutation leads to impaired DNA damage repair. We thus asked whether FUS recruitment dynamics differ across different cell types putatively contributing to such cell-type-specific vulnerability. For this, we generated engineered human induced pluripotent stem cells carrying wild-type FUS-eGFP and analyzed different derivatives from these, combining a laser micro-irradiation technique and a workflow to analyze the real-time process of FUS at DNA damage sites. All cells showed FUS recruitment to DNA damage sites except for hiPSC, with only 70% of cells recruiting FUS. In-depth analysis of the kinetics of FUS recruitment at DNA damage sites revealed differences among cellular types in response to laser-irradiation-induced DNA damage. Our work suggests a cell-type-dependent recruitment behavior of FUS during the DNA damage response and repair procedure. The presented workflow might be a valuable tool for studying the proteins recruited at the DNA damage site in a real-time course.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Dano ao DNA , Mutação
2.
Cells ; 12(10)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37408187

RESUMO

Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/farmacologia
3.
Cell Rep ; 42(2): 112025, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36696267

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Citoplasma/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
4.
Ann Med ; 53(1): 1991-1998, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34726527

RESUMO

BACKGROUND: Homoeostasis of the autonomic nervous system (ANS) contributes to cognitive functional integrity in learners and can be greatly influenced by emotions and stress. While moderate stress can enhance learning and memory processes, long-term stress compromises learning performance in a face-to-face classroom environment. Integrative online learning and communication tools were shown to be beneficial for visualization and comprehension but their effects on the ANS are poorly understood. We aim to assess the effects of video conference-supported live lectures compared to on-site classroom teaching on autonomic functions and their association with learning performance. METHODS AND DESIGN: Fifty mentally and physically healthy medical students will be enrolled in a randomized two-period crossover study. Subjects will attend a seminar, which is held in face-to-face and simultaneously transmitted via videoconference. Subjects will be allocated in two arms in a randomized sequence determining the order in which both seminar settings will be attended. At baseline and throughout the interactive seminar subjects will undergo detailed autonomic testing comprising neurocardiac (heart rate variability), sudomotor (sympathetic skin response), neurovascular (laser Doppler flowmetry) and pupillomotor (pupillography) function. Furthermore, learning progress will be evaluated using pre- and post-tests on the seminar subject and emotions will be assessed using profile of mood state (POMS) questionnaire. STATISTICAL ANALYSIS: Carryover effects will be handled using a two-way repeated measures (mixed model). Between-group differences (baseline vs face-to-face vs videoconference) will be determined using one-way analysis of variance ANOVA followed by Student-Newman-Keul test. LIMITATIONS AND STRENGTHS: This study may elucidate complex interactions between autonomic and emotional dynamics during conventional on-site and video conference-based teaching, thus providing a basis for customized learning and teaching methods. Understanding and utilizing advanced distance learning strategies is particularly important during the current pandemic, which has been limiting on-site teaching dramatically in nearly all countries of the world.


Assuntos
Currículo , Educação a Distância/organização & administração , Educação Médica/organização & administração , Neurofisiologia/educação , Ensaios Clínicos Controlados Aleatórios como Assunto , Faculdades de Medicina , Ensino/organização & administração , Sistema Nervoso Autônomo , Estudos Cross-Over , Humanos , Universidades
5.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670886

RESUMO

Deficient intracellular transport is a common pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the fused-in-sarcoma (FUS) gene are one of the most common genetic causes for familial ALS. Motor neurons carrying a mutation in the nuclear localization sequence of FUS (P525L) show impaired axonal transport of several organelles, suggesting that mislocalized cytoplasmic FUS might directly interfere with the transport machinery. To test this hypothesis, we studied the effect of FUS on kinesin-1 motility in vitro. Using a modified microtubule gliding motility assay on surfaces coated with kinesin-1 motor proteins, we showed that neither recombinant wildtype and P525L FUS variants nor lysates from isogenic ALS-patient-specific iPSC-derived spinal motor neurons expressing those FUS variants significantly affected gliding velocities. We hence conclude that during ALS pathogenesis the initial negative effect of FUS (P525L) on axonal transport is an indirect nature and requires additional factors or mechanisms.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Transporte Axonal , Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Linhagem Celular , Humanos , Cinesinas , Neurônios Motores/fisiologia , Proteína FUS de Ligação a RNA/metabolismo
6.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619157

RESUMO

Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient-albeit to a smaller extent-to induce premature distal axonal trafficking deficits and increased DSBs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Apoptose , Axônios/metabolismo , Axônios/patologia , Células Cultivadas , Senescência Celular , Citoesqueleto/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Metabolismo Energético , Mutação com Ganho de Função , Humanos , Mutação com Perda de Função , Microscopia de Fluorescência , Neurônios Motores/metabolismo , Organelas/metabolismo , Proteína FUS de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico
7.
Acta Neuropathol ; 139(1): 99-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642962

RESUMO

Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs. Furthermore, we found that hnRNPA3 is depleted from the nucleus and partially mislocalized to cytoplasmic poly-GA inclusions in C9orf72 patients, suggesting that poly-GA sequesters hnRNPA3 within the cytoplasm. We now demonstrate that hnRNPA3 also binds to the antisense repeat RNA. Both DPR production and deposition from sense and antisense RNA repeats are increased upon hnRNPA3 reduction. All DPRs induced DNA double strand breaks (DSB), which was further enhanced upon reduction of hnRNPA3. Poly-glycine-arginine and poly-proline-arginine increased foci formed by phosphorylated Ataxia Telangiectasia Mutated (pATM), a major sensor of DSBs, whereas poly-glycine-alanine (poly-GA) evoked a reduction of pATM foci. In dentate gyri of C9orf72 patients, lower nuclear hnRNPA3 levels were associated with increased DNA damage. Moreover, enhanced poly-GA deposition correlated with reduced pATM foci. Since cytoplasmic pATM deposits partially colocalized with poly-GA deposits, these results suggest that poly-GA, the most frequent DPR observed in C9orf72 patients, differentially causes DNA damage and that poly-GA selectively sequesters pATM in the cytoplasm inhibiting its recruitment to sites of DNA damage. Thus, mislocalization of nuclear hnRNPA3 caused by poly-GA leads to increased poly-GA production, which partially depletes pATM, and consequently enhances DSB.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína C9orf72/genética , Repetições de Dinucleotídeos/fisiologia , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Dano ao DNA/genética , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
8.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108504

RESUMO

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Receptores de Glutamato/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Proteína C9orf72/genética , Sinalização do Cálcio , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
9.
Sci Data ; 5: 180241, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30422121

RESUMO

Neurodegenerative diseases pose a complex field with various neuronal subtypes and distinct differentially affected intra-neuronal compartments. Modelling of neurodegeneration requires faithful in vitro separation of axons and dendrites, their distal and proximal compartments as well as organelle tracking with defined retrograde versus anterograde directionality. We use microfluidic chambers to achieve compartmentalization and established high throughput live organelle imaging at standardized distal and proximal axonal readout sites in iPSC-derived spinal motor neuron cultures from human amyotrophic lateral sclerosis patients to study trafficking phenotypes of potential disease relevance. Our semi-automated pipeline of organelle tracking with FIJI and KNIME yields quantitative, multiparametric high content phenotypic signatures of organelle morphology and their trafficking in axons. We provide here the resultant large datasets to enable systemic signature interrogations for comprehensive and predictive disease modelling, mechanistic dissection and secondary hit validation (e.g. drug screens, genetic screens). Due to the nearly complete coverage of analysed motility events, our quantitative method yields a bias-free statistical power superior over common analyses of a handful of manual kymographs.


Assuntos
Transporte Axonal , Ensaios de Triagem em Larga Escala , Doenças Neurodegenerativas/fisiopatologia , Organelas , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Transporte Axonal/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Microscopia Intravital/métodos , Técnicas Analíticas Microfluídicas , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Doenças Neurodegenerativas/patologia
10.
Stem Cell Reports ; 10(2): 375-389, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29358088

RESUMO

Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antidepressivos/farmacologia , Antipiréticos/farmacologia , Autofagia/genética , Sistemas CRISPR-Cas , Drosophila , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fluorescência Verde/genética , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
11.
Nat Commun ; 9(1): 335, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362359

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dano ao DNA , Neurônios Motores/metabolismo , Mutação , Agregação Patológica de Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Diferenciação Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Proteína FUS de Ligação a RNA/genética , Transdução de Sinais
12.
Neurobiol Dis ; 82: 420-429, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253605

RESUMO

Autosomal-dominant mutations within the gene FUS (fused in sarcoma) are responsible for 5% of familial cases of amyotrophic lateral sclerosis (ALS). The FUS protein is physiologically mainly located in the nucleus, while cytoplasmic FUS aggregates are pathological hallmarks of FUS-ALS. Data from non-neuronal cell models and/or models using heterologous expression of FUS mutants suggest cytoplasmic FUS translocation as a pivotal initial event which leads to neurodegeneration depending on a second hit. Here we present the first human model of FUS-ALS using patient-derived neurons carrying endogenous FUS mutations leading to a benign (R521C) or a more severe clinical phenotype (frameshift mutation R495QfsX527). We thereby showed that the severity of the underlying FUS mutation determines the amount of cytoplasmic FUS accumulation and cellular vulnerability to exogenous stress. Cytoplasmic FUS inclusions formed spontaneously depending on both, severity of FUS mutation and neuronal aging. These aggregates showed typical characteristics of FUS-ALS including methylated FUS. Finally, neurodegeneration was not specific to layer V cortical neurons perfectly in line with the current model of disease spreading in ALS. Our study highlights the value and usefulness of patient-derived cell models in FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Proteína FUS de Ligação a RNA/genética , Adulto , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Progressão da Doença , Feminino , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Mutação , Neurônios/fisiologia , Fenótipo , Proteína FUS de Ligação a RNA/metabolismo , Índice de Gravidade de Doença , Medula Espinal/patologia , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...