Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 51: 36-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28456746

RESUMO

Recently, NOD-SCID IL2Rγ-/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34+ hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34+ cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34+ cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis.


Assuntos
Diferenciação Celular , Engenharia Genética , Interleucina-3 , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Trombopoetina , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Interleucina-3/biossíntese , Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Trombopoetina/biossíntese , Trombopoetina/genética
2.
Blood ; 128(25): 2949-2959, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27733356

RESUMO

To begin to understand the mechanisms that regulate self-renewal, differentiation, and transformation of human hematopoietic stem cells or to evaluate the efficacy of novel treatment modalities, stem cells need to be studied in their own species-specific microenvironment. By implanting ceramic scaffolds coated with human mesenchymal stromal cells into immune-deficient mice, we were able to mimic the human bone marrow niche. Thus, we have established a human leukemia xenograft mouse model in which a large cohort of patient samples successfully engrafted, which covered all of the important genetic and risk subgroups. We found that by providing a humanized environment, stem cell self-renewal properties were better maintained as determined by serial transplantation assays and genome-wide transcriptome studies, and less clonal drift was observed as determined by exome sequencing. The human leukemia xenograft mouse models that we have established here will serve as an excellent resource for future studies aimed at exploring novel therapeutic approaches.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Alicerces Teciduais/química , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Autorrenovação Celular , Separação Celular , Células Clonais , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia Mieloide Aguda/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Fenótipo , Células Estromais/patologia
3.
Stem Cells Int ; 2016: 1625015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642303

RESUMO

Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA