Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 20(1): 426, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715864

RESUMO

BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies. METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor. RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km. CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.


Assuntos
Anopheles/fisiologia , Erradicação de Doenças/estatística & dados numéricos , Malária/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium knowlesi/fisiologia , Distribuição Animal , Animais , Malásia/epidemiologia
3.
Bull Entomol Res ; 110(6): 700-707, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32410722

RESUMO

Currently, dengue control relies largely on reactive vector control programmes. Proactive vector-control using a rational, well-balanced integrated vector management approach may prove more successful for dengue control. As part of the development of a cluster randomized controlled epidemiological trial, a study was conducted in Johor Bahru, Malaysia. The study included one control site (three buildings) and three intervention sites which were treated as follows: targeted outdoor residual spraying only (TORS site, two buildings); deployment of autodissemination devices only (ADD site, four buildings); and the previous two treatments combined (TORS + ADD site, three buildings). The primary entomological measurement was per cent of positive ovitraps-ovitrap index (OI). The effect of each intervention on OI was analyzed by a modified ordinary least squares regression model. Relative to the control site, the TORS and ADD sites showed a reduction in the Aedes OI (-6.5%, P = 0.04 and -8.3%, P = 0.10, respectively). Analysis by species showed that, relative to control, the Ae. aegypti OI was lower in ADD (-8.9%, P = 0.03) and in TORS (-10.4%, P = 0.02). No such effect was evident in the TORS + ADD site. The present study provides insights into the methods to be used for the main trial. The combination of multiple insecticides with different modes of action in one package is innovative, although we could not demonstrate the additive effect of TORS + ADD. Further work is required to strengthen our understanding of how these interventions impact dengue vector populations and dengue transmission.


Assuntos
Aedes , Inseticidas , Controle de Mosquitos/métodos , Animais , Cidades , Dengue/prevenção & controle , Malásia , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...